# Technical Requirements ## Data Architecture **Core Collections:** 1. **tasks** - Primary task entity with rich metadata 2. **projects** - Project hierarchy and organization 3. **task_statuses** - Customizable status definitions 4. **task_assignments** - User and AI agent assignments 5. **task_dependencies** - Task relationship management 6. **task_time_entries** - Time tracking and progress data 7. **task_templates** - Reusable task patterns **Relationships:** - Many-to-many: tasks ↔ projects, tasks ↔ users, tasks ↔ tags - One-to-many: projects → tasks, task_statuses → tasks - Self-referential: tasks → dependencies, projects → sub-projects **Integration Collections:** 8. **task_ai_contexts** - AI agent context and prompt data 9. **task_bmad_workflows** - BMad methodology integration 10. **task_external_refs** - Links to Task Master, GitHub issues, etc. ## Performance Requirements - **Response Time** - <100ms for basic CRUD operations - **Scalability** - Support 10,000+ tasks across 100+ projects - **Availability** - 99.9% uptime leveraging existing Directus infrastructure - **Concurrent Users** - 50+ simultaneous users on Directus interface ## Security Requirements - **Authentication** - Leverage existing Directus authentication system - **Authorization** - Role-based access control for tasks and projects - **Data Protection** - Encryption at rest using Directus security features - **API Security** - Rate limiting and token-based authentication for API access