# Story 6.5: Implement Vector Storage Integration ## Story Information - **Epic/Task**: Task 6 - Develop AI Integration Layer - **Story Number**: 6.5 - **Title**: Implement Vector Storage Integration - **Status**: Ready - **Complexity**: High - **Priority**: Medium - **Dependencies**: Tasks 6.1, 6.2, 6.3 (6.1 completed, 6.2 ready, 6.3 draft) ## Story Statement As the Directus Task Management system, I need a vector storage system integrated with Pinecone that enables semantic search across tasks, provides similarity-based recommendations, supports RAG (Retrieval Augmented Generation) workflows, and enables intelligent task discovery so that users can find relevant information through meaning rather than just keywords. ## Acceptance Criteria 1. [ ] Pinecone vector database is configured and connected 2. [ ] Text embedding generation works with OpenAI ada-002 model 3. [ ] Vector indexing processes tasks, projects, and documentation 4. [ ] Semantic search achieves 90% relevance accuracy 5. [ ] Similarity search returns related tasks within 200ms 6. [ ] RAG pipeline integrates with existing AI services 7. [ ] Incremental indexing handles new/updated content 8. [ ] Vector store maintains synchronization with primary database 9. [ ] Hybrid search combines vector and keyword search 10. [ ] Integration tests validate vector operations ## Dev Notes ### Architecture Context References - **[Source: architecture.md#Vector Storage]** - Pinecone integration requirements - **[Source: Story 6.1]** - OpenAI service for embeddings - **[Source: Story 6.2]** - NLP outputs need vectorization - **[Source: Story 6.3]** - Context retrieval via vectors ### Previous Story Insights - OpenAI service can generate embeddings - LangChain supports vector store integration - Redis available for caching frequent queries - Task and project data ready for indexing ### Vector Storage Architecture **System Components**: ```typescript interface VectorStorageSystem { // Core vector operations vectorStore: PineconeVectorStore; embeddingGenerator: EmbeddingService; // Indexing and retrieval indexingPipeline: VectorIndexingService; retrievalEngine: SemanticRetrievalService; // Search and recommendations semanticSearch: SemanticSearchService; recommendationEngine: SimilarityRecommendationService; // RAG integration ragPipeline: RAGPipelineService; contextAugmenter: ContextAugmentationService; } ``` **Vector Collections**: - Tasks Collection (task descriptions, requirements) - Projects Collection (project contexts, goals) - Documents Collection (documentation, guides) - Conversations Collection (chat history, Q&A) - Knowledge Base (domain knowledge, best practices) ### Indexing Strategy 1. **Initial Indexing**: Bulk process existing data 2. **Incremental Updates**: Real-time indexing of changes 3. **Scheduled Re-indexing**: Nightly optimization 4. **Selective Indexing**: Only meaningful content ### File Locations - **Vector Services**: `src/services/vector/` - Vector storage services - **Embedding Services**: `src/services/vector/embeddings/` - Embedding generation - **Search Services**: `src/services/vector/search/` - Search implementations - **RAG Services**: `src/services/vector/rag/` - RAG pipeline - **Tests**: `tests/services/vector/` - Vector service tests ### Technical Constraints - Pinecone free tier: 100K vectors, 1 index - OpenAI ada-002: 1536 dimensions - Batch processing: 100 vectors per request - Rate limiting: 20 requests per second - Index size: Monitor for scaling needs ## Tasks / Subtasks ### Task 1: Set up Pinecone Infrastructure (AC: 1) - [ ] Create `src/services/vector/pinecone.service.ts` - [ ] Configure Pinecone client with API keys - [ ] Create vector index with proper dimensions - [ ] Set up namespace strategy for collections - [ ] Implement connection health checks ### Task 2: Implement Embedding Generation Service (AC: 2) - [ ] Create `src/services/vector/embeddings/embedding.service.ts` - [ ] Integrate OpenAI ada-002 for text embeddings - [ ] Add batch processing for multiple texts - [ ] Implement caching for common embeddings - [ ] Create embedding validation and normalization ### Task 3: Build Vector Indexing Pipeline (AC: 3, 7) - [ ] Create `src/services/vector/indexing/indexing-pipeline.service.ts` - [ ] Implement task vectorization process - [ ] Add project and document indexing - [ ] Create incremental update mechanism - [ ] Build error recovery for failed indexing ### Task 4: Develop Semantic Search Service (AC: 4, 5) - [ ] Create `src/services/vector/search/semantic-search.service.ts` - [ ] Implement vector similarity search - [ ] Add relevance scoring algorithms - [ ] Create result ranking and filtering - [ ] Optimize query performance ### Task 5: Build Hybrid Search System (AC: 9) - [ ] Create `src/services/vector/search/hybrid-search.service.ts` - [ ] Combine vector and keyword search - [ ] Implement result fusion strategies - [ ] Add weight balancing for search types - [ ] Create fallback mechanisms ### Task 6: Implement RAG Pipeline (AC: 6) - [ ] Create `src/services/vector/rag/rag-pipeline.service.ts` - [ ] Build context retrieval system - [ ] Integrate with LangChain for augmentation - [ ] Create prompt enhancement with context - [ ] Add source attribution for retrieved content ### Task 7: Create Recommendation Engine (AC: 5) - [ ] Create `src/services/vector/recommendations/similarity.service.ts` - [ ] Implement task similarity recommendations - [ ] Add collaborative filtering logic - [ ] Create personalized recommendations - [ ] Build recommendation explanations ### Task 8: Implement Synchronization Service (AC: 8) - [ ] Create `src/services/vector/sync/vector-sync.service.ts` - [ ] Monitor database changes for updates - [ ] Implement two-way sync logic - [ ] Add conflict resolution - [ ] Create sync status tracking ### Task 9: Build Vector Management Tools (AC: 7, 8) - [ ] Create `src/services/vector/management/vector-admin.service.ts` - [ ] Implement index optimization utilities - [ ] Add vector count monitoring - [ ] Create cleanup and maintenance tools - [ ] Build migration utilities ### Task 10: Create API Endpoints - [ ] Add POST `/api/vector/search` - [ ] Add GET `/api/vector/similar/:taskId` - [ ] Add POST `/api/vector/index` - [ ] Add GET `/api/vector/recommendations` - [ ] Add DELETE `/api/vector/clear` ### Task 11: Write Tests (AC: 10) - [ ] Create unit tests for embedding service - [ ] Test vector indexing pipeline - [ ] Validate search accuracy - [ ] Test RAG pipeline integration - [ ] Achieve 80% coverage ### Task 12: Performance Optimization - [ ] Implement query caching strategies - [ ] Optimize batch processing - [ ] Add connection pooling - [ ] Create performance monitoring - [ ] Document optimization techniques ### Task 13: Documentation and Examples - [ ] Create vector search guide - [ ] Document RAG implementation - [ ] Add semantic search examples - [ ] Create troubleshooting guide - [ ] Write scaling recommendations ## Project Structure Notes - Integrates with all previous AI stories - Uses existing OpenAI and LangChain services - Maintains TypeORM patterns for metadata - Leverages Redis for caching ## Dev Agent Record *To be filled by implementing agent* ### File List **Created:** - **Modified:** - ### Implementation Notes *To be filled during implementation* ### Challenges Encountered *To be filled during implementation* ### Technical Decisions *To be filled during implementation* ### Completion Notes *To be filled upon completion* --- *Story created by: Bob (Scrum Master) Date: 2025-08-12*