# Trax v2 Technical Architecture: High-Performance Single-Node Design ## ๐ŸŽฏ Architecture Overview Trax v2 represents a significant evolution from v1, focusing on **high performance** and **speaker diarization** rather than distributed scalability. The architecture is designed as a **highly optimized, single-node, multi-process application** that leverages the full power of modern hardware while maintaining simplicity and determinism. ### Key Architectural Principles 1. **Single-Node Optimization**: Maximize utilization of one powerful machine rather than distributing across multiple nodes 2. **Multi-Pass Pipeline**: Intelligent multi-stage processing for 99.5%+ accuracy 3. **Parallel Processing**: Concurrent execution of independent tasks within the same job 4. **Model Caching**: Persistent model management to avoid reloading overhead 5. **Memory Efficiency**: 8-bit quantization and smart resource management 6. **Deterministic Processing**: Predictable, reproducible results across runs ## ๐Ÿ—๏ธ Core Architecture Components ### 1. Enhanced Task System The task system evolves from simple single-action tasks to complex pipeline workflows: ```python @dataclass class PipelineTask: """Enhanced task definition for v2 pipeline workflows""" id: UUID media_file_id: UUID pipeline_stages: List[str] # ["transcribe", "enhance", "diarize", "merge"] pipeline_config: Dict[str, Any] # Model selection, domain, quality settings status: TaskStatus current_stage: Optional[str] progress_percentage: float error_message: Optional[str] created_at: datetime updated_at: datetime ``` #### Pipeline Stages - **transcribe**: Multi-pass transcription with confidence scoring - **enhance**: AI-powered text refinement using DeepSeek - **diarize**: Speaker identification using Pyannote.audio - **merge**: Combine transcript and diarization results ### 2. ModelManager Singleton Central model management to prevent memory duplication and enable fast model switching: ```python class ModelManager: """Singleton for managing AI model lifecycle and caching""" def __init__(self): self._models: Dict[str, Any] = {} self._lora_adapters: Dict[str, Any] = {} self._model_configs: Dict[str, Dict] = {} async def get_model(self, model_type: str, config: Dict) -> Any: """Get or load model with caching""" cache_key = self._generate_cache_key(model_type, config) if cache_key not in self._models: model = await self._load_model(model_type, config) self._models[cache_key] = model return self._models[cache_key] async def load_lora_adapter(self, domain: str) -> Any: """Load LoRA adapter for domain-specific processing""" if domain not in self._lora_adapters: adapter = await self._load_lora_adapter(domain) self._lora_adapters[domain] = adapter return self._lora_adapters[domain] ``` ### 3. Multi-Pass Transcription Pipeline Intelligent multi-stage processing for maximum accuracy: ```python class MultiPassTranscriptionPipeline: """Multi-pass transcription pipeline for 99.5%+ accuracy""" def __init__(self, config: PipelineConfig): self.config = config self.model_manager = ModelManager() async def process(self, audio_file: Path) -> TranscriptionResult: """Execute multi-pass transcription pipeline""" # Stage 1: Fast initial transcription initial_result = await self._fast_pass(audio_file) # Stage 2: Confidence scoring and refinement confidence_scores = self._calculate_confidence(initial_result) refinement_segments = self._identify_low_confidence_segments(confidence_scores) if refinement_segments: refined_result = await self._refinement_pass(audio_file, refinement_segments) merged_result = self._merge_transcripts(initial_result, refined_result) else: merged_result = initial_result # Stage 3: AI enhancement (optional) if self.config.enable_enhancement: enhanced_result = await self._enhancement_pass(merged_result) return enhanced_result return merged_result async def _fast_pass(self, audio_file: Path) -> TranscriptionResult: """First pass using fast model (distil-small.en)""" model = await self.model_manager.get_model("whisper", { "model": "distil-small.en", "quantized": True }) return await self._transcribe_with_model(audio_file, model) async def _refinement_pass(self, audio_file: Path, segments: List[Segment]) -> TranscriptionResult: """Refinement pass using accurate model (distil-large-v3)""" model = await self.model_manager.get_model("whisper", { "model": "distil-large-v3", "quantized": True, "segments": segments }) return await self._transcribe_with_model(audio_file, model) async def _enhancement_pass(self, transcript: TranscriptionResult) -> TranscriptionResult: """AI enhancement using DeepSeek""" enhancer = await self.model_manager.get_model("deepseek", {}) return await enhancer.enhance_transcript(transcript) ``` ### 4. Speaker Diarization Service Pyannote.audio integration for speaker identification: ```python class SpeakerDiarizationService: """Speaker diarization using Pyannote.audio""" def __init__(self, config: DiarizationConfig): self.config = config self.model_manager = ModelManager() self._embedding_model = None self._clustering_model = None async def diarize(self, audio_file: Path) -> DiarizationResult: """Perform speaker diarization on audio file""" # Load models (cached) if not self._embedding_model: self._embedding_model = await self.model_manager.get_model("pyannote_embedding", {}) if not self._clustering_model: self._clustering_model = await self.model_manager.get_model("pyannote_clustering", {}) # Extract speaker embeddings embeddings = await self._extract_embeddings(audio_file) # Perform clustering speaker_segments = await self._cluster_speakers(embeddings) # Post-process and validate validated_segments = self._validate_speaker_segments(speaker_segments) return DiarizationResult( speaker_segments=validated_segments, speaker_count=len(set(seg.speaker_id for seg in validated_segments)), confidence_score=self._calculate_diarization_confidence(validated_segments) ) async def _extract_embeddings(self, audio_file: Path) -> List[Embedding]: """Extract speaker embeddings from audio""" # Implementation using Pyannote.audio embedding model pass async def _cluster_speakers(self, embeddings: List[Embedding]) -> List[SpeakerSegment]: """Cluster embeddings to identify speakers""" # Implementation using Pyannote.audio clustering pass ``` ### 5. Domain Adaptation with LoRA Lightweight domain-specific model adaptation: ```python class LoRAAdapterManager: """Manage LoRA adapters for domain-specific processing""" def __init__(self): self.model_manager = ModelManager() self._base_model = None self._current_adapter = None async def load_domain_adapter(self, domain: str) -> None: """Load LoRA adapter for specific domain""" # Load base model if not loaded if not self._base_model: self._base_model = await self.model_manager.get_model("whisper_base", {}) # Load domain-specific adapter adapter = await self.model_manager.load_lora_adapter(domain) # Apply adapter to base model self._base_model.load_adapter(adapter) self._current_adapter = domain async def auto_detect_domain(self, audio_file: Path) -> str: """Automatically detect content domain""" # Use keyword analysis or content classification # Return detected domain (technical, medical, academic, general) pass async def transcribe_with_domain(self, audio_file: Path, domain: str) -> TranscriptionResult: """Transcribe with domain-specific model""" await self.load_domain_adapter(domain) return await self._base_model.transcribe(audio_file) ``` ## ๐Ÿ”„ Data Flow Architecture ### Parallel Processing Flow ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Audio File โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Parallel Processing Pipeline โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Transcription โ”‚ โ”‚ Diarization โ”‚ โ”‚ โ”‚ โ”‚ Pipeline โ”‚ โ”‚ Pipeline โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Fast Pass โ”‚ โ”‚ โ€ข Embedding Extraction โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Refinement โ”‚ โ”‚ โ€ข Speaker Clustering โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Enhancement โ”‚ โ”‚ โ€ข Segment Validation โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ–ผ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Transcription โ”‚ โ”‚ Diarization โ”‚ โ”‚ Result โ”‚ โ”‚ Result โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Merge Service โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Align timestamps โ”‚ โ”‚ โ€ข Combine speaker labels โ”‚ โ”‚ โ€ข Validate consistency โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Final Transcript โ”‚ โ”‚ โ”‚ โ”‚ โ€ข High accuracy text โ”‚ โ”‚ โ€ข Speaker identification โ”‚ โ”‚ โ€ข Confidence scores โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### State Management Flow ```python class ProcessingJobManager: """Manage processing job lifecycle and state transitions""" async def create_job(self, media_file_id: UUID, config: PipelineConfig) -> ProcessingJob: """Create new processing job""" job = ProcessingJob( id=uuid4(), media_file_id=media_file_id, pipeline_config=config, status=TaskStatus.QUEUED, created_at=datetime.utcnow() ) await self._save_job(job) return job async def execute_job(self, job: ProcessingJob) -> None: """Execute processing job with state management""" try: # Update status to processing await self._update_job_status(job.id, TaskStatus.PROCESSING) # Execute pipeline stages for stage in job.pipeline_config.stages: await self._update_job_stage(job.id, stage) result = await self._execute_stage(job, stage) if not result.success: raise ProcessingError(f"Stage {stage} failed: {result.error}") # Mark as completed await self._update_job_status(job.id, TaskStatus.COMPLETED) except Exception as e: await self._update_job_status(job.id, TaskStatus.FAILED, str(e)) raise ``` ## ๐Ÿš€ Performance Optimization Strategies ### 1. Memory Optimization ```python class MemoryOptimizer: """Memory optimization strategies for v2""" def __init__(self): self.max_memory_gb = 8 self.current_usage_gb = 0 async def optimize_model_loading(self, model_config: Dict) -> Dict: """Apply memory optimizations to model loading""" # 8-bit quantization if model_config.get("quantized", True): model_config["torch_dtype"] = torch.int8 # Gradient checkpointing for large models if model_config.get("model_size") == "large": model_config["gradient_checkpointing"] = True # Model offloading for very large models if self.current_usage_gb > self.max_memory_gb * 0.8: model_config["device_map"] = "auto" return model_config async def cleanup_unused_models(self) -> None: """Clean up unused models to free memory""" unused_models = self._identify_unused_models() for model in unused_models: await self._unload_model(model) ``` ### 2. CPU Optimization ```python class CPUOptimizer: """CPU optimization for parallel processing""" def __init__(self): self.cpu_count = os.cpu_count() self.optimal_worker_count = min(self.cpu_count, 8) async def configure_worker_pool(self) -> AsyncWorkerPool: """Configure optimal worker pool size""" return AsyncWorkerPool( max_workers=self.optimal_worker_count, thread_name_prefix="trax_worker" ) async def optimize_audio_processing(self, audio_file: Path) -> Path: """Optimize audio for processing""" # Convert to optimal format (16kHz mono WAV) # Apply noise reduction if needed # Chunk large files appropriately pass ``` ### 3. Pipeline Optimization ```python class PipelineOptimizer: """Optimize pipeline execution for performance""" async def execute_parallel_stages(self, job: ProcessingJob) -> Dict[str, Any]: """Execute independent stages in parallel""" # Identify parallel stages parallel_stages = self._identify_parallel_stages(job.pipeline_config) # Execute in parallel tasks = [] for stage in parallel_stages: task = asyncio.create_task(self._execute_stage(job, stage)) tasks.append(task) # Wait for completion results = await asyncio.gather(*tasks, return_exceptions=True) return dict(zip(parallel_stages, results)) def _identify_parallel_stages(self, config: PipelineConfig) -> List[str]: """Identify stages that can run in parallel""" # Transcription and diarization can run in parallel # Enhancement must wait for transcription # Merging must wait for both transcription and diarization pass ``` ## ๐Ÿ’ป CLI Interface Architecture ### Enhanced CLI Interface ```python class TraxCLI: """Enhanced CLI interface for Trax v2""" def __init__(self): self.progress_reporter = ProgressReporter() self.batch_processor = BatchProcessor() self.logger = setup_logging() async def transcribe_single(self, file_path: Path, config: PipelineConfig) -> None: """Transcribe a single file with enhanced progress reporting""" # Validate file self._validate_file(file_path) # Create processing job job = await self._create_job(file_path, config) # Process with real-time progress await self._process_with_progress(job) # Display results self._display_results(job) async def transcribe_batch(self, directory: Path, config: PipelineConfig) -> None: """Process batch of files with enhanced progress reporting""" # Validate directory files = self._validate_directory(directory) # Create batch job batch_job = await self._create_batch_job(files, config) # Process batch with progress await self._process_batch_with_progress(batch_job) # Display batch results self._display_batch_results(batch_job) def _validate_file(self, file_path: Path) -> None: """Validate single file for processing""" if not file_path.exists(): raise FileNotFoundError(f"File not found: {file_path}") if file_path.stat().st_size > 500 * 1024 * 1024: # 500MB raise ValueError(f"File too large: {file_path}") if file_path.suffix.lower() not in ['.mp3', '.mp4', '.wav', '.m4a', '.webm']: raise ValueError(f"Unsupported format: {file_path.suffix}") def _validate_directory(self, directory: Path) -> List[Path]: """Validate directory and return list of supported files""" if not directory.exists(): raise FileNotFoundError(f"Directory not found: {directory}") supported_extensions = {'.mp3', '.mp4', '.wav', '.m4a', '.webm'} files = [ f for f in directory.iterdir() if f.is_file() and f.suffix.lower() in supported_extensions ] if not files: raise ValueError(f"No supported files found in: {directory}") return files ``` ### Progress Reporting ```python class ProgressReporter: """Real-time progress reporting for CLI""" def __init__(self): self.start_time = None self.current_stage = None async def report_progress(self, job: ProcessingJob) -> None: """Report real-time progress for a job""" if self.start_time is None: self.start_time = time.time() # Calculate progress elapsed = time.time() - self.start_time progress = job.progress_percentage # Display progress bar self._display_progress_bar(progress, elapsed) # Display current stage if job.current_stage != self.current_stage: self.current_stage = job.current_stage self._display_stage_info(job.current_stage) # Display performance metrics self._display_performance_metrics(job) def _display_progress_bar(self, progress: float, elapsed: float) -> None: """Display ASCII progress bar""" bar_length = 50 filled_length = int(bar_length * progress / 100) bar = 'โ–ˆ' * filled_length + '-' * (bar_length - filled_length) print(f"\rProgress: [{bar}] {progress:.1f}% ({elapsed:.1f}s)", end='', flush=True) def _display_stage_info(self, stage: str) -> None: """Display current processing stage""" print(f"\n๐Ÿ”„ {stage.title()}...") def _display_performance_metrics(self, job: ProcessingJob) -> None: """Display performance metrics""" if hasattr(job, 'performance_metrics'): metrics = job.performance_metrics print(f" CPU: {metrics.get('cpu_usage', 0):.1f}% | " f"Memory: {metrics.get('memory_usage_gb', 0):.1f}GB | " f"Speed: {metrics.get('processing_speed', 0):.1f}x") ``` ## ๐Ÿ”ง Configuration Management ### Pipeline Configuration ```python @dataclass class PipelineConfig: """Configuration for v2 processing pipeline""" # Pipeline version version: str = "v2" # v1, v2, v2+ # Model selection transcription_model: str = "distil-large-v3" enhancement_model: str = "deepseek" diarization_model: str = "pyannote" # Quality settings accuracy_threshold: float = 0.995 # 99.5% confidence_threshold: float = 0.8 # Domain settings domain: Optional[str] = None # technical, medical, academic, general auto_detect_domain: bool = True # Performance settings enable_quantization: bool = True parallel_processing: bool = True max_workers: int = 8 # Diarization settings enable_diarization: bool = False min_speaker_count: int = 2 max_speaker_count: int = 10 # Enhancement settings enable_enhancement: bool = True enhancement_prompts: Dict[str, str] = field(default_factory=dict) ``` ### Environment Configuration ```python class TraxV2Config: """Configuration management for Trax v2""" def __init__(self): self.load_from_env() self.load_from_file() self.validate() def load_from_env(self): """Load configuration from environment variables""" self.openai_api_key = os.getenv("OPENAI_API_KEY") self.deepseek_api_key = os.getenv("DEEPSEEK_API_KEY") self.huggingface_token = os.getenv("HUGGINGFACE_TOKEN") # Performance settings self.max_memory_gb = int(os.getenv("TRAX_MAX_MEMORY_GB", "8")) self.max_workers = int(os.getenv("TRAX_MAX_WORKERS", "8")) self.enable_quantization = os.getenv("TRAX_ENABLE_QUANTIZATION", "true").lower() == "true" def validate(self): """Validate configuration""" if not self.openai_api_key: raise ConfigurationError("OPENAI_API_KEY is required") if not self.deepseek_api_key: raise ConfigurationError("DEEPSEEK_API_KEY is required") if not self.huggingface_token: raise ConfigurationError("HUGGINGFACE_TOKEN is required for diarization") ``` ## ๐Ÿงช Testing Architecture ### Unit Testing Strategy ```python class TraxV2TestSuite: """Comprehensive test suite for Trax v2""" def test_multi_pass_pipeline(self): """Test multi-pass transcription pipeline""" pipeline = MultiPassTranscriptionPipeline(self.test_config) result = await pipeline.process(self.test_audio_file) assert result.accuracy_estimate >= 0.995 assert result.processing_time_ms < 25000 # <25 seconds assert len(result.segments) > 0 def test_diarization_service(self): """Test speaker diarization""" diarization = SpeakerDiarizationService(self.test_config) result = await diarization.diarize(self.test_multi_speaker_file) assert result.speaker_count >= 2 assert result.confidence_score >= 0.9 assert len(result.speaker_segments) > 0 def test_lora_adapter_manager(self): """Test domain adaptation""" adapter_manager = LoRAAdapterManager() await adapter_manager.load_domain_adapter("technical") result = await adapter_manager.transcribe_with_domain( self.test_technical_file, "technical" ) assert result.domain_used == "technical" assert result.accuracy_estimate > 0.99 ``` ### Integration Testing Strategy ```python class TraxV2IntegrationTests: """Integration tests for complete v2 pipeline""" async def test_complete_v2_pipeline(self): """Test complete v2 pipeline with diarization""" job_manager = ProcessingJobManager() # Create job job = await job_manager.create_job( self.test_file_id, PipelineConfig(version="v2+", enable_diarization=True) ) # Execute job await job_manager.execute_job(job) # Verify results assert job.status == TaskStatus.COMPLETED assert job.transcript.accuracy_estimate >= 0.995 assert job.transcript.speaker_count >= 2 assert job.processing_time_ms < 25000 async def test_cli_batch_processing(self): """Test CLI batch processing with multiple files""" cli = TraxCLI() # Process batch of files test_directory = Path("test_files") config = PipelineConfig(version="v2", enable_diarization=True) await cli.transcribe_batch(test_directory, config) # Verify all files processed results = await self._get_batch_results() assert len(results) == len(list(test_directory.glob("*.mp3"))) assert all(result.status == "completed" for result in results) ``` ## ๐Ÿ“Š Performance Monitoring ### Metrics Collection ```python class PerformanceMonitor: """Monitor and collect performance metrics""" def __init__(self): self.metrics: Dict[str, List[float]] = defaultdict(list) async def record_metric(self, metric_name: str, value: float): """Record a performance metric""" self.metrics[metric_name].append(value) async def get_performance_report(self) -> Dict[str, Dict]: """Generate performance report""" report = {} for metric_name, values in self.metrics.items(): report[metric_name] = { "count": len(values), "mean": statistics.mean(values), "median": statistics.median(values), "min": min(values), "max": max(values), "std": statistics.stdev(values) if len(values) > 1 else 0 } return report async def check_performance_targets(self) -> Dict[str, bool]: """Check if performance targets are met""" targets = { "processing_time_5min": 25000, # <25 seconds "accuracy_threshold": 0.995, # 99.5%+ "memory_usage_gb": 8, # <8GB "diarization_accuracy": 0.9 # 90%+ } results = {} for target_name, target_value in targets.items(): if target_name in self.metrics: current_value = statistics.mean(self.metrics[target_name]) results[target_name] = current_value <= target_value return results ``` ## ๐Ÿ”„ Migration Strategy ### From v1 to v2 ```python class TraxV2Migration: """Migration utilities for upgrading from v1 to v2""" async def migrate_database_schema(self): """Migrate database schema for v2 features""" # Add new tables await self._create_speaker_profiles_table() await self._create_processing_jobs_table() # Modify existing tables await self._add_v2_columns_to_transcripts() await self._add_v2_columns_to_media_files() async def migrate_existing_transcripts(self): """Migrate existing v1 transcripts to v2 format""" v1_transcripts = await self._get_v1_transcripts() for transcript in v1_transcripts: # Update schema transcript.pipeline_version = "v1" transcript.merged_content = transcript.raw_content # Save updated transcript await self._save_transcript(transcript) async def validate_migration(self) -> bool: """Validate successful migration""" # Check schema schema_valid = await self._validate_schema() # Check data integrity data_valid = await self._validate_data_integrity() # Check functionality functionality_valid = await self._test_v2_functionality() return schema_valid and data_valid and functionality_valid ``` --- *This architecture document provides the technical foundation for implementing Trax v2, focusing on high performance and speaker diarization while maintaining the simplicity and determinism of the single-node design.*