# Backend Developer Agent - Capabilities & Tools ## 🎯 Agent Overview The **Backend Python Developer Agent** is a comprehensive representation of the first backend developer hire for the Trax media processing platform. This agent has access to specific tools and capabilities needed to build the protocol-based transcription pipeline from v1 to v4. ### Agent Profile - **Name**: Backend Python Developer - **Role**: Senior Backend Developer - **Experience Level**: Senior - **Salary Range**: $150,000 - $200,000 - **Current Focus**: Phase 1: Foundation (Weeks 1-2) ## 🛠️ Available Tools by Category ### 1. Core Development Tools **Tools**: 3 | **Skills**: 8 #### Python 3.11+ Development - **Async Programming**: Write async/await code for concurrent operations - **Protocol Design**: Create protocol-based service interfaces - **Type Hints**: Use comprehensive type hints throughout #### uv Package Manager - **Install Dependencies**: Install project dependencies - **Compile Requirements**: Generate requirements.txt from pyproject.toml - **Run Commands**: Execute Python commands with uv #### Click CLI Framework - **Create transcription commands** - **Build batch processing interface** - **Implement export functionality** ### 2. Database Tools **Tools**: 2 | **Skills**: 4 #### PostgreSQL + SQLAlchemy - **Model Definition**: Define SQLAlchemy models with JSONB - **Database Migrations**: Create and apply Alembic migrations - **JSONB Operations**: Perform JSONB queries and operations #### Database Registry Pattern - **Implement centralized model registry** - **Handle multiple database connections** - **Manage model relationships** ### 3. ML Integration Tools **Tools**: 3 | **Skills**: 6 #### Whisper Integration - **Model Loading**: Load Whisper models with faster-whisper - **Audio Transcription**: Transcribe audio files with Whisper - **Chunking Strategy**: Handle large audio files with chunking #### Protocol-Based Services - **Design service interfaces** - **Implement version compatibility** - **Create swappable components** #### DeepSeek API Integration - **Enhance transcript quality** - **Implement structured outputs** - **Handle API rate limits** ### 4. Testing Tools **Tools**: 2 | **Skills**: 4 #### pytest with Real Files - **Real File Testing**: Test with actual audio files instead of mocks - **Test Fixtures**: Create reusable test fixtures with real files - **Performance Testing**: Benchmark transcription performance #### Coverage Reporting - **Achieve >80% code coverage** - **Identify untested code** - **Track test quality** ### 5. Architecture Tools **Tools**: 3 | **Skills**: 3 #### Iterative Pipeline Design - **Version Management**: Manage different pipeline versions - **Backward Compatibility**: Ensure new versions work with old data - **Feature Flags**: Enable/disable features by version #### Batch Processing System - **Process multiple files** - **Handle independent failures** - **Track progress** #### Caching Strategy - **Cache expensive operations** - **Implement different TTLs** - **Handle cache invalidation** ### 6. Performance Tools **Tools**: 2 | **Skills**: 3 #### Performance Profiling - **Profile transcription speed** - **Optimize memory usage** - **Benchmark improvements** #### M3 Hardware Optimization - **Metal Performance Shaders**: Use M3 GPU for Whisper inference - **Memory Optimization**: Optimize memory usage for large files - **Performance Profiling**: Profile and optimize performance ### 7. Deployment Tools **Tools**: 2 | **Skills**: 2 #### Docker Containerization - **Create production images** - **Handle dependencies** - **Optimize image size** #### CI/CD Pipeline - **Automate testing** - **Deploy to staging** - **Monitor deployments** ## 📊 Agent Statistics - **Total Tools Available**: 17 - **Required Skills**: 30 - **Categories**: 7 - **Development Phases**: 4 (v1, v2, v3, v4) ## 🎯 Phase-Specific Tool Availability ### Phase 1 (v1): Foundation **Focus**: Basic Whisper transcription (95% accuracy, <30s for 5min audio) **Tools**: Core Development, Database, Testing ### Phase 2 (v2): Enhancement **Focus**: AI enhancement (99% accuracy, <35s processing) **Tools**: + ML Integration ### Phase 3 (v3): Optimization **Focus**: Multi-pass accuracy (99.5% accuracy, <25s processing) **Tools**: + Performance ### Phase 4 (v4): Advanced Features **Focus**: Speaker diarization (90% speaker accuracy) **Tools**: + Deployment ## 🚀 Success Metrics The agent must achieve these targets: | Metric | Target | |--------|--------| | Processing Speed | 5-minute audio in <30 seconds | | Accuracy | 99.5% transcription accuracy with multi-pass | | Batch Capacity | Process 100+ files efficiently | | Memory Usage | <4GB peak memory usage | | Cost | <$0.01 per transcript | | Code Coverage | >80% with real file testing | | CLI Response | <1 second CLI response time | | File Size | Handle files up to 500MB | | Data Loss | Zero data loss on errors | ## 💻 Development Workflow ### 1. Environment Setup ```bash uv venv source .venv/bin/activate uv pip install -e .[dev] ``` ### 2. Database Setup ```bash alembic revision -m 'Initial schema' alembic upgrade head ``` ### 3. Core Development ```python class TranscriptionService(Protocol): async def transcribe(self, audio: Path) -> Transcript: ... ``` ### 4. ML Integration ```python from faster_whisper import WhisperModel model = WhisperModel('distil-large-v3', device='mps') ``` ### 5. Testing ```bash uv run pytest tests/ uv run pytest --cov=src ``` ### 6. Performance Optimization ```python model.transcribe(audio_path, chunk_length=30, overlap=2) python -m cProfile src/main.py ``` ## 🔧 Key Capabilities ### Protocol-Based Architecture - Design clean service interfaces - Implement dependency injection - Create swappable components - Maintain version compatibility ### Real File Testing - Test with actual audio files - No mocks in test suite - Benchmark real performance - Handle edge cases ### Performance Optimization - M3 hardware acceleration - Memory usage optimization - Chunking for large files - Profiling and benchmarking ### Batch Processing - Handle 100+ files efficiently - Independent failure handling - Progress tracking - Queue management ## 📁 File Structure ``` src/agents/ ├── backend_developer_agent.py # Main agent definition ├── tools/ │ └── backend_developer_tools.py # Detailed tool definitions └── demo_backend_developer.py # Demo script ``` ## 🎮 Usage Examples ### Running the Demo ```bash cd src/agents python demo_backend_developer.py ``` ### Checking Tool Availability ```python from agents.backend_developer_agent import check_tool_availability # Check if agent can use a specific tool can_use_whisper = check_tool_availability("Whisper Integration") print(f"Can use Whisper: {can_use_whisper}") ``` ### Getting Tools by Category ```python from agents.tools.backend_developer_tools import get_tools_by_category # Get all database tools db_tools = get_tools_by_category("database") for tool in db_tools: print(f"Database tool: {tool.name}") ``` ### Getting Phase-Specific Tools ```python from agents.tools.backend_developer_tools import get_tools_by_phase # Get tools available in v1 v1_tools = get_tools_by_phase("v1") for tool in v1_tools: print(f"v1 tool: {tool.name}") ``` ## 🎯 Next Steps 1. **Run the demo script** to see all capabilities 2. **Review the job posting** for hiring 3. **Set up development environment** for the agent 4. **Begin Phase 1 development** with core tools 5. **Implement protocol-based architecture** from day one --- **The Backend Developer Agent is ready to build the future of media processing with clean, scalable, and reliable architecture!** 🚀