1548 lines
462 KiB
HTML
1548 lines
462 KiB
HTML
<!DOCTYPE html>
|
|
<!-- Created by pdf2htmlEX (https://github.com/pdf2htmlEX/pdf2htmlEX) -->
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
<head>
|
|
<meta charset="utf-8"/>
|
|
<meta name="generator" content="pdf2htmlEX"/>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
|
|
<style type="text/css">
|
|
/*!
|
|
* Base CSS for pdf2htmlEX
|
|
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
|
|
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
|
|
*/#sidebar{position:absolute;top:0;left:0;bottom:0;width:250px;padding:0;margin:0;overflow:auto}#page-container{position:absolute;top:0;left:0;margin:0;padding:0;border:0}@media screen{#sidebar.opened+#page-container{left:250px}#page-container{bottom:0;right:0;overflow:auto}.loading-indicator{display:none}.loading-indicator.active{display:block;position:absolute;width:64px;height:64px;top:50%;left:50%;margin-top:-32px;margin-left:-32px}.loading-indicator img{position:absolute;top:0;left:0;bottom:0;right:0}}@media print{@page{margin:0}html{margin:0}body{margin:0;-webkit-print-color-adjust:exact}#sidebar{display:none}#page-container{width:auto;height:auto;overflow:visible;background-color:transparent}.d{display:none}}.pf{position:relative;background-color:white;overflow:hidden;margin:0;border:0}.pc{position:absolute;border:0;padding:0;margin:0;top:0;left:0;width:100%;height:100%;overflow:hidden;display:block;transform-origin:0 0;-ms-transform-origin:0 0;-webkit-transform-origin:0 0}.pc.opened{display:block}.bf{position:absolute;border:0;margin:0;top:0;bottom:0;width:100%;height:100%;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}.bi{position:absolute;border:0;margin:0;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}@media print{.pf{margin:0;box-shadow:none;page-break-after:always;page-break-inside:avoid}@-moz-document url-prefix(){.pf{overflow:visible;border:1px solid #fff}.pc{overflow:visible}}}.c{position:absolute;border:0;padding:0;margin:0;overflow:hidden;display:block}.t{position:absolute;white-space:pre;font-size:1px;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%;unicode-bidi:bidi-override;-moz-font-feature-settings:"liga" 0}.t:after{content:''}.t:before{content:'';display:inline-block}.t span{position:relative;unicode-bidi:bidi-override}._{display:inline-block;color:transparent;z-index:-1}::selection{background:rgba(127,255,255,0.4)}::-moz-selection{background:rgba(127,255,255,0.4)}.pi{display:none}.d{position:absolute;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%}.it{border:0;background-color:rgba(255,255,255,0.0)}.ir:hover{cursor:pointer}</style>
|
|
<style type="text/css">
|
|
/*!
|
|
* Fancy styles for pdf2htmlEX
|
|
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
|
|
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
|
|
*/@keyframes fadein{from{opacity:0}to{opacity:1}}@-webkit-keyframes fadein{from{opacity:0}to{opacity:1}}@keyframes swing{0{transform:rotate(0)}10%{transform:rotate(0)}90%{transform:rotate(720deg)}100%{transform:rotate(720deg)}}@-webkit-keyframes swing{0{-webkit-transform:rotate(0)}10%{-webkit-transform:rotate(0)}90%{-webkit-transform:rotate(720deg)}100%{-webkit-transform:rotate(720deg)}}@media screen{#sidebar{background-color:#2f3236;background-image:url("")}#outline{font-family:Georgia,Times,"Times New Roman",serif;font-size:13px;margin:2em 1em}#outline ul{padding:0}#outline li{list-style-type:none;margin:1em 0}#outline li>ul{margin-left:1em}#outline a,#outline a:visited,#outline a:hover,#outline a:active{line-height:1.2;color:#e8e8e8;text-overflow:ellipsis;white-space:nowrap;text-decoration:none;display:block;overflow:hidden;outline:0}#outline a:hover{color:#0cf}#page-container{background-color:#9e9e9e;background-image:url("");-webkit-transition:left 500ms;transition:left 500ms}.pf{margin:13px auto;box-shadow:1px 1px 3px 1px #333;border-collapse:separate}.pc.opened{-webkit-animation:fadein 100ms;animation:fadein 100ms}.loading-indicator.active{-webkit-animation:swing 1.5s ease-in-out .01s infinite alternate none;animation:swing 1.5s ease-in-out .01s infinite alternate none}.checked{background:no-repeat url()}}</style>
|
|
<style type="text/css">
|
|
.ff0{font-family:sans-serif;visibility:hidden;}
|
|
@font-face{font-family:ff1;src:url('data:application/font-woff;base64,d09GRgABAAAAABygABAAAAAAKJwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAb+AAAABwAAAAce1FxvUdERUYAABvgAAAAFwAAABgAJQAAT1MvMgAAAeAAAABBAAAAVlW6Xt9jbWFwAAADLAAAALYAAAF6PZw4T2N2dCAAAAPkAAAABAAAAAQAIQJ5Z2FzcAAAG9gAAAAIAAAACP//AANnbHlmAAAEfAAAFXgAAB4cVVP05WhlYWQAAAFsAAAANgAAADb5UBX3aGhlYQAAAaQAAAAgAAAAJAYkAvZobXR4AAACJAAAAQUAAAGEwrEHXGxvY2EAAAPoAAAAlAAAAMS17b1kbWF4cAAAAcQAAAAaAAAAIABlAH1uYW1lAAAZ9AAAAO0AAAG2YVYLsHBvc3QAABrkAAAA8gAAAfRvsXkYdmhlYQAAHBQAAAAiAAAAJAM/ExJ2bXR4AAAcOAAAAGgAAADKWK1VmwABAAAAAQAATP5pT18PPPUAHwPoAAAAALHacr0AAAAA5Nlgof/t/vwDfAK4AAAACAACAAAAAAAAeJxjYGRgYNrx7w8DA/OL/2//b2CuYQCKoIBEAMOECB14nGNgZGBgSGTwY2BmAAFGBgTQAxEAE1QA4wAAeJxjYGT8xziBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBiqmHb8+wNUuYORBaYGAAOsC0QAAAB4nIWQsUpDQRBFz8yiQkg0BF/UKMLT8ASjCRIhRFCQlJKfsLHRwiKVP2FlY2Vh5U9YWKVPIRY2CiLYiUpQn/cJNiK4cHZmd2cvc8f2idGyrrYh+DWzVqVr1fSJG9atTaK4Yc+0bUAsdkRZNMSc2BJroi46YkX1LT9P332Pgh9RC4G8HzPtTaaU1/2NSdul4ncs+Ca5sM1YVhMKemsSKW/4IZHdkkhj1K8oSe8j9NJXO6FmnxTtjFX1FCsuW0e9XJLofoJ7XD1UFEekU9JdxpLI2yPz8hnZAS15XNS5aIN06Kfpi/UZl1awC2bCA/yQzeQ3mhH6/428/on8EXr/oz75AjKOUIgAAAB4nM1ONw4CQQycJeec45GOnHOODeIB0FIiWiqeCC1UlDzE7N0hBD9grLE14yADUENhBAwSTlwxWWuw49XBQ+oLyGOANbY44EwkOyJKmGODPY5E9AToQXe60ZUu8g0bvqHh1EIHMIlvk6l4UuEXTHlJWtHyWb3BaDJbrDa7w+lye7zKjM8fCIbCkWgMcSGRTKUzYjaXLxQ/N0rlSrVWbzRbaHe6vf5gOBpPprP5YrnCP+AF35cdTAAAACECeXicY2Bg0ILCNoZFDPsY7jC8YPjHyMNoxBjC2MF4gvEZkxyTF1Ma0xqmW8wMzA7MbcxbmN+xOLH0sZxiVWMNY93F+o7Niq2BbQXbC3YJ9jT2eewvONQ4EjjOcYpxenGWcG7gvMclx9XFdYmbjTuKu4H7FY8OTxDPNJ4bvGK8XrwlvEt47/AZ8E3iu8fPRy4EAHcDJqF4nH1ZB5gb5Zmef0aaGZXpRV1aSbuSVquVVl1bVLavtvdde72su40djBtu4NhgcIhxAjkghJIcLTxAAgEncBDKJXAXciSXdlwC3FECeQiEOECAJHfxSvfPSFsMufh5JM+MNf/3vV99v88IirgRBATRWxAMIZDwwwCJtJ0hNMjZ2MO49r/bzmAovEQexpTHWuXxGQIH59rOAOV5nHNz/jjndQPd2889h96yuNWNziLwJFv5ffQ5dBwJIWmkgCB1qWTCn0xLNCDkeCydisckkQZej8+vficT6TBIJuBjWRIJP/yxz+vBJVEmaAC/4RvgxbHg90Ljc6M5d60Ww4VETagvGd/VOb3xnyOWgVxr90a+Lehx+BxkS8f6rjXZexZiDqORopmJ/bucGp0xYIs1p1KbBy7PpZotkWxbdMbHubob416rObpTnGjKD3Yh0AzIUNkOUuh1CAVvTKpwE6GqBuqpTbMLa4xbLtmPXmed+/HJXS+NmIofHzv+ofJe+WzZjvyy8h7mhK/hhD8HX/P58e37L9liXLMwuwm9ruvD48c+LppGXtp18sdziCovUR5HnkW6EB5BTEn1DdUcFUvgiWCMd/GmGqE2teZBmcubeEbmeFu8NrYevutDHgQC8hK0NpKOS17f2bMvNShntpTfR+5EZhEDPHPVYbtkp1OGH1b9hh/lt83lw+AJ9DHlDBAHXnBdQ+neIPrYue8jMC7K74PH0UvhOTKCCOoZFeWE2JKH2LMThw9PjF52eKK/ubm/vxm99IlrTj3x+Olrnlg8ff2tt95ww62lX6g4B8qLYBM8C+LUwjeJZDqV5KCn03FOdAGwKdHenkh4D9LdG9zeMIZhrI6oAX8YEhrnF5/x4KR6hgzPUPRxV8/IgXTVYqq1KygJnIjH4LHg/r4rL+8VWgrz093x2DhrYrcWi1sX1scH3/W5OAmK8PcU5k90pru685qpCzZ0dR1cE7nA1gjlRCDuh6GcEES9cm5qBX88ZoIxWbGBgqFqjQt4x3guM5jMFGdP7ezuEwycnPFn5/NNdX6DaN6Vrg/0gnf03Z0Fv78nqF0/sOGkW9ZzfHDHYGHCI/D8WKY+FoV2t0P5P1Ttzihe4aBvJW/SnUybOJwAPeYdOzrKyMHPX92HXlraEH76afeDd4D4UwdUG+Xgu99Ar4CxgcDEYkDV95/WGye8QsVQl50eJqlQeHzvF9bGJnnWQPQ0ZKZnCvaogRMuGmjSM2gK+ydp99rN+7ySXtImN3T0zPMsKGgoKC8K5d2PfhaxL+dLPLZkl9WiwXHy6I19id0tIY411Lg7ZraNT+18BP2sEHnziulLzwxMEiy9eWZi91V7T72p4AjDr2+he5R8EtwSjhLelOCGeLxhcLnnWzp305dKf7SgpIzu4dpKQvqnYAsVVOpOZzVmZcSLROC7K+FPqGlZ0WY5biTRCZZqjGKXHxze1Dl4QVtmXeKiscnNgXvrQ9lUNMePGeKhnmS6WASZtm25jeO5VIc9tLaxuHO+t2FiTCg2JLs7o5amTIelmM0Wi81tfQqGUPksuAfq4oA3+Oq0rtaGSolTihtudxUWPjM0s+OpGzTHru1pC7dkwiwPUObi8cl9p3bd+pYkW164bfuerZPdk1roZxRJwxy/C1wLY8QEUSZWbM2tuk7XyHLN6g9YU70uvVm9gGeVz5UX0a+iNyC1iB+eRShKuYBUzdK0EBecYPleUTyCGsDro5hR6BG2bxfybup1xyuEkU3HR0fjHQKjHSPnZ4H9bT1OkkDLoiirxTzousVvcEYtx2AYo8dIEqdfkwFaKik+o8plNAPtZEXqkCaoQTJdbQSy2iT8XlUsB4vpqrTjJHHpmmp9smb3gc/c0nO4+LPevMAaPMe4bO/U+JC/9pLC+k1bveg8h+mH+gabgidSc42ANWokB/gNS2MfYkPt6ayu9PvXB9e0jA5BnzXAvrUG6gLjuQ7WEtVragkwyQSMvWWXoWsMYuHIVx+buXF6djqAA0Fc6Lzw1KWHr2k/le2yPPDFma/NsZameEv2gc/f8OUrEdVnRojzF/Bsi5KdQsIXAUkZInViq2GmxZUUlQ4aua7CY76Ne7e0126/Z/jOHw6z1Hh3+74HvnN7yo76zSJmZFGD3DK0OXPBAxkNy2Gi3VyTvummK78i+dR6YIa+PYzuR9pUPMs+5CrSIRCIx+QNow3AgzsgzlQexNVH/jBoUPKiFcRgnUUPy9hl9957WR9HGeji2JNPj2AoJZtF7m3O+GuO1VAihhllwmp9nrW+6qxvsN25rohhnBYYZfBnswQIHsNcDe6adIQWTG8ZhJ7WbFvbsMz9j8wJbVmop6l8DrWi+5Dkcn9Y0dK9pCX4f7WELaShu3u+scAZdGxrIxiYbUABJTtdv+KMP+MpDcuiGC3hovNxTipoNBqWQBkB/EmWUIJHUWvSb+0PCKZXDUJvXTHZ0i2SJasOJZQ6BOPhY+izemhMWCgcQKSxpVR2AWI5h7Ng2aLox+0cpWFGtmfufuZX9121hqRzp75w+9cPfZlh1w/FNg0DLYEa6Yu9VsnFP3j6xiebDmE33n3N4Ud2XswYoaE0GsVvIrTHW9BveXizfLKklCpuVXbmQBa4pfMerHKtpCrsRpv0xqTvRKC2lyJ1/FBsW0syZyRLN5NULtmyLTbE6pV/v6qhdpAiwTY0I3IAZ6GJ9CgtlCiJx+jKnWj+7W8tAqpX7miMl8BHq3/5XoXPWMvnQD/UG9a8NPf3FL/GQM8anmv1ztIGPTMb2L07MMvoU6iWo4GOhaGjA0Z+8a+cAWjNGo1Zi+orOeSBdvmLen7H34iU80Qt84xEBPj8MGTUq8qPaMAArVLWQK1vbs6Xp2HY5I33Bb2djN5Ad4IXUgsLqV6WfyfsDUe/naL7HPPzjsh07kcgkPCKCSWCdCjNoSSnRxV1WR0wcIt/YSnUoBjEiJIE86zPbKq/qZHXQZPBX2h8iW8uNpoxnWonPcTRAXFALpNeSrI4scyMzofzM50wP9OWN7GO8Sf+vX3OSlFDqa8UrNOMoZGi+I7muzUamsJ41CAYUEqRRaE6qeIPovwXrBnKiZ5nLQworGtVzPhVYTZwvgWx5vWR3Fibyfh66U/OdW3d8ZG0j5njRjotrz4fjTYFcw7ZwE8pbM2oFR3gPxZ/iU4tnotgKl49IZhR1gAvSyx4X1EKNztKLS5Jw0G9jOUPYS3cjzSo+D8dv0rFBVgYrDKDSfCCG4xCRQ+PINpbD0kcA/5FDzh+2j46ag9yJNCbS3ynhauYXI+zMvhOOKzRcXq2JIBn7GzVF6joXHwO5SsxpeT4KyrfMkMrrerTYKUW0wBcdfPTz9x16ntPly68dsexq76wb/ySFPvo6au///ip6x8BrQfP3HbDqW/O3gSxSdC3ZvQyBZsQy69QMH96Vfv6FGi/tMH7RZbZvXHPeN6NW+3ZifnNXp6Si5Nx7+YMo4+k0D0oCfb2DF/kx3UjXR3z5OJbDKVlWQ3GkhgrgFd8VlzBEykn0N9DPJyShdqVwQonZJPk8a1ChYOZE1//4Veufvwfrpx9+dCzpVcu37n/quO7dp5mxPs23faTp6889Ih5c6+0Htx+1f1fOnHzmYdUeyn4Lof4QkgCQfKg6jN0BSphcgKTCg7zVcuzeifIFfBS2iGw/hAI8XeL/I5trdldja2xYDYu3cy5M4I52tc50vbd5+eGWN6IY1wNeMFlJUgG6ED/cGu349khN8ECAGyus2YZN8J8A7PE53JDqBLvPsj/HoHYa+FNtTibqsTPn447QQW5v2oUEwEOOfaliq3zC1OXXLhh1EDrtuZax9oHto/vmp1t1oBXTuSC7kxTtL84uS1yY/9CTzTU5k/NNveuC+1V8wuH/XUBvQOJQV8rB0IJbsiqlQGXEKFMpT990tden8os4NAbJEjCqGNN4EStrMd1FEoaCENN8iglDSe3XWnucfCXuoMBntRq0ZNWmScMJlr8GuuI+hYXbbyWU0KZxk0WFAU1zVaDoZrzPIznu2BuKT1rKZkV3Nxy+YMcj6tw4eVKA2ryPDM6d2SqvtU8PGxpkbcfPXJCT/d2dG9C97MkarKUbl0/ted6IAVIg1pjNMHSz09/dut6cNAsoSSLqXPwYvkd9EEo26v0S5zAvOfnMOzZNqUOL/fKB1NOw1vSRwaOyXgu3hAtWGX20dv1Nl/Atn6rjG7W4bbFb6EFKw+JjpK3AE70vlI/eNJhhKGvhc+gzD+Xf4ddBmUWoUzb6ioPBUINDOA8JRTeIKT95z9xgfQqreAjArx35A7JUq/vamedDEu+JJ24RnpN4BiHpViojZDyI9u3izwVtR+PyS06OTuiZUiPpaNPiHh4sFD6I7gtZbFpSbU1aHl58UngKv0arQ+bNUSlXZBUupR57b2QpdI/DEBnSH7pIdiKGdhT1fnXr+Qa5KPgNsjzA0qE1ZlUnykrE2WIqc5x1Q2KylIhP1Fi3J9cmmnAtZQj7vKmk4H2fZtrnd6YFnWwBJMYrstlMF4n7y6MWwTbQJ7o87qD1mRkR11XTX0kyJkJkp4OR1M/Mlmonm2WcY9gSSv6sOV3wUtwVpCUziXkAbdS3ZQA98J4EpZnQFxiseNjubGth6ZD9T6ClRl5Kh25abqjoQXdyrhKL3r3zmzcz3MBtN5vLZlC8XvGdphZNYYbIe7PQdw2BXUV4XmiKrQLnAR1/YnhC3ftSHcLrNXprm1on2xuX+Pye4/MbdpWY6Nlp3u+Z/QCRN1nvAvehrpblTkHsip/Ul0/wKKIE8kVGSZu1WyWAlssyULCIkUGMome+vb1lwwPxwvplsHJvKsNdfssFKvlFx+CkynL4WFJ3Ds4f6Wt9PSb4eT2yf55Tq2XQYjlFMQiKvW4zl09OG1amQm1SwYDJ0rvYFNFb4tH03NxceNFk4Wp0geP2gLxUOGvoji80V5jnjkwue7wWFiScs3qrmIRXA8xKbsKk0RI4nncEEJUBrYcquzbqoajUUn8zhXHg535zgGfy06JyYiZzhWTExLH8k1m0cfi4Bjm1fw1iyu9kiFwse7PGpQRZVF30UxDkOFJyWpJFxoRZXbzlc6BsxBbCmlHhhDEpBZWODUudR1Tdd0HHaeIJyoOXC7LVasLnuUJHFvVne4OxSS7xd7UON9bE3ZYGKPDqud0nLEmQEpT6/y5XZN9o+kDXRMX/9tCKtiYynx3uH1ix+YN3R0+LiyyPEkabe2N7WsZHrZIWmZIPRZ0xzY6ac6Doa2NvmJDeyAPXr4629OVy/cvfuDP5MJN3pwafwzksR9Au8bUSa0SKalKgp1Pvys5+AkOvtYSDXaZizPJdpIL5TzeXD1liIU8LW7C2FUzMlKToki03iYZjKin9I/r+gov6g0alVfDv7ifBmP+4MtGPcapTzDCCGMITunIq+hxyFHcn9jFVTljdlVAu8Buzu7gObP1mGtkxJVxmWt73ayOiqPHrRxrMXOcdfEy5Wzc+a5ZJmk+VTrJ0Jixyt9fhbhbVu3pEmHN6i6+TFhUabEcqqx24xLOAJPKqF/19fb6wjJTH5c4mtczPlc+76rj9VJ9PM2KgU5b4Uc9qZmTdisVUni0BtXhUqxT1n3RQmGEAhlHGQv4wMTgtN5b6jWnHDpRz7JEeOAON2w0lR6nLS8ib0I9ZRhzn1ZK0fXNaC4XzVF6c72v3UQySZWmYnoGnJNEI0VaFu8SDAoZV/rlOfSP4A4lfuuWffoJl1Yd/Tfcr0qUKjuCpRpc/QkacZjFSKwjSvLxWKY17bBbmnyNExQdj8USSYfMCN54oxDqrovELJ7ecGsH2xhrbAtQuJaRv92aanlDkjTqPEEQnHQm1pa0/djMY+oTXMtLL1oELUtl1wd89kavr7fj+TqMhJFe5QCL4COIKbzix2VcK8ud8/WvgAMfJeCftBxrKGTNrXW9vXVJ0VJTqGN967z79ExIsSOJ1f5rKJH9kMVplWdjth+4ZC3PDKx1+z//nCBipFL3/LDu/XJpR7V6E+1fleN/mTlyZNO6A0d/N5wrTAwXugfZ/fNrLrl0buLAcxMbtk5OX7i5sjsplcHL4NuIR0EkrHSCT4VlRFkKp+OOVSz3mpmxgXVHFpqznKXNP5iPBxkdFcVi9TTTkShM9ueyYCy3c+3cMccLFFNJQxKjBPBxLUrSkt10/L9qIwtdMxtVPZxQj3fAPYhLqbhgJQ7O37BWQxA7r5G8E2+2TERksbtnZO+ByXCjk2FYraBjgseGopnhhXwuUCprKnThPxtOjE4fFCmrY/F+uwXTgf2bB/vmiz0HFFqr8G8wCHUIKv9nUI3CKmxZWtpXV7vkSsBKMdHAOWyoPyHyGqHPLttkjuFESg5y9qHUyACcaLWi9Xsij+MMXRdM9dV22mVOJHR94j1WTolDRXYa+rQD+tQDb5R1mFLIK+IiYIleL7FrGEtmXc5cbIruGW3tC+s5uidQE7qgo3mw0FyPgxpPqtNWxzeMJLqte5Lt9a5mryUdiLeaZ6AcL5STAm/AXo0IcVNa6WxKJ6lQgSwgFPacAzcbwdVXW+yeJp2UjiRqUjTV4Adv7MRqNX9oDNhpsxQfeAOQBM5HFN1ZeOZvwFHEqZypcmKFQsHapTqrSgHUlGCPu8Ndzc7cV6UouDrUVxtrl0LgaKnUFIh/IFA4W3rZw6BM7aDP35/9OU9ValL5f8vvgFfBcdU22Cc5Z4VhrmKm4Ohp+iYjzdSb5qZtOYHfMKev91Ozw6YMS4O20gNgykxjukp6Ganga2+YaRuuUkMSZVR5f4Jc+04oLwUb8d/htvDJJ7gt5vUTXgw+0ctDHc6AoL1i1G9gyKB9ZMoSdWo3bsVlql5ub7NbnNJ17NSF4sOUxQSOQ9G4htEZSu/fuc3OgAq5JViCKpXfo4ysiKrUVquLlB79yU/AVhuGVWo1DeP1Kahnx+qeEgEVqyznbh74fX/bYKmqxWCDUerTU77mtlqPhRntN/idAXc+arfVycVNIaZGGuq31LKmlgxldzrG6XrKbaqV84fsrF1d2MBRS9iyhdbzpLq1IrQ1zk2HkpiiNa/F9LSjt8hTIpwqNAAi1VqcU7d6cH0FA1bWgfvBFSofWLHsp6eNCjevlAG1MypmxvJ1rcEsg22Z1/KZxoA3VkOL9H1czN5QR8HhjjR4LPojJF8HroDCjZhBoyu9CVDKYNbQLHyi01h8pY5IU02tBtW39hg4K+g0aQ2qXhZY50+CB1WeXFkfKWtKwptW9qNyHkgwJWFhACfltWMHk8B5Khh1GGOCVvS/XvpwoCfjEY4cxaDWazXAGb6FM9BGoJFKD+l9ECjyf7dntYN4nI2OMWrDQBBFn2zZwTikCiHlFgFXEtI6AWNSq0xhZPcGL0IgJFjLt0idk+QYOUCOkQOkyJezRYoU3mWYNzt/Zj9wzRsRw4mYcx94xBWPgccseA0cS/MReCL+CjxlHt1KGcUzvdydpwYeccND4DEvPAeOpXkPPBF/Bp6Kv9nS0lMrGhwHSt0Ctm1f9407lKWKjToVJyn2eJWuOjV7QUF3nh6yl8JhsKRkymvF/7t/e0tyElYKK73lSeu6ti86Xzlj08yszR8PqpZ5skpsZiW8xPNOHc9RqsGj0W+DL3bOH+uuNXmaXbTnB+KDRDgAAAB4nG3MyU5CQRBG4fODAwjKPMPOWYPAvbcvuHYecJ51wYKlT+DDKzHpcmMlnXxJdR0S/M73F2X+m8nsiQRJ0mTIkiNPgSKl2f8KVWrUadCkRZsOq6yxzgabbLHNDrt02aNHnwEBIRGOmCEj9jngkCOOOeGUM865YMwV19xwyx33PPDIE8+88Mob73wooaTmNK8FLSqltJaUUVbLWlFOeRVUVEllVVRVTXU11FRLbXVS48nn9HLa7Xn0PQYeoUfk4Txij2Han/dMgSn0Cmwb9E0Dk10EfxeRV2iKRl7Oes56znrOes56zirOmWKvOP4BvjBeaQAAAAAAAf//AAJ4nGNgZGBg4AFiASBmAmIWCA0AAjsAJgAAAAABAAAAAOSdnl4AAAAAsdpyvQAAAADk2WCheJxjYBRgYOz4+5OBgVX03x8GBqYdDAwMjAzIgAUAi8AFZAAAeJxjfsHQxsDArMD8glmBVZRZgeEcwwSGCUx3mNyZTjBkMCyFw3kMixjWg1iMExl6oGJrGNaCSQRcyrAEiushIiDVyJhhARD3MNYD4UTGXMYqIJzIaMe4mHEBGM5jLAK6hSwIAHSXLco=')format("woff");}.ff1{font-family:ff1;line-height:0.956000;font-style:normal;font-weight:normal;visibility:visible;}
|
|
@font-face{font-family:ff2;src:url('data:application/font-woff;base64,d09GRgABAAAAAChcABAAAAAATwwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAnkAAAABwAAAAce1FxvUdERUYAACd4AAAAFwAAABgAJQAAT1MvMgAAAeAAAABEAAAAVlW6/f5jbWFwAAADaAAAAOUAAAGUkysp2mN2dCAAAARQAAAABAAAAAQAIQJ5Z2FzcAAAJ3AAAAAIAAAACP//AANnbHlmAAAFGAAAGjMAACUMFSvtz2hlYWQAAAFsAAAANgAAADb5dxX3aGhlYQAAAaQAAAAgAAAAJAZLAvxobXR4AAACJAAAAUEAAATyzCAKo2xvY2EAAARUAAAAwQAABCZ5b3BYbWF4cAAAAcQAAAAaAAAAIAIYAINuYW1lAAAfTAAAAO0AAAG2YVYLsHBvc3QAACA8AAAHMgAAFyUEVWrvdmhlYQAAJ6wAAAAiAAAAJAOrEs12bXR4AAAn0AAAAIwAAAQs6JXjnwABAAAAAQAAOlnnjF8PPPUAHwPoAAAAALHacr0AAAAA5Nlgof+o/vwD6AK4AAAACAACAAAAAAAAeJxjYGRgYNrx7w8DA/OL/yv+b2B+wQAUQQHpAMVbCEp4nGNgZGBgEmIIYWBlAAFGBgTQAxEAC/sAngAAeJxjYGRsZpzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBA1CQAQkEpLmmACkFBRGmHf/+AFXuYGRhgKoBAOyqCwN4nO2QP0sDQRDF38wSBUlMCJ5/ogjRI0pOEzTCEUEhpFCR+xI2ImhhYeWXSGWTykIQUtlapbCyTyEWNgZEsTs0BM36jlj4ASxv4Hdv92b27ezIMfJgSMBPn3qBmrRRND5cfcAsbrAsLgJx7bs2sYNHbEgVBeqmhKhKB3myTyZJmcyRbbJGSqROVljvk3V67EbICTy9sl96iJSewzMGSW1gWiuY4rqkPUzIAXIS2Gt9xoJuYczUMBrVmRTzFThcl/UUjjyhQJ8RvUOWnt/mzH7qLRLasD16FiSNI0nbNwltn+/zZICMXGKV/eepRamz7zbrBkijCyUOe85RE7wjy/8RSyQpr5jnrBz273Mui9xnpGP72rQfco9x+hlpYYbeXb5zz7wAf/mdMXgWzIM+YH9DQtIaapSLI444/jt+AOvQXT4AAAB4nGNgYGBmgGAZBkYGEOgD8hjBfBaGIiAtwiAAFGFhUGLQZLBhsGeIZohnqGKoUxD5/x8oq8CgwqDNYMfgyBDLkMhQAxH9//D/g//3/98Dsm4zMDxwAZonwgADAkAsBGaBbGVhsAKS1gxhQDKcgYGRjQHqDCDNBCSYGFABIwPYMaxs7BycXAzcPLx8/AKCQsIiomLiEpJS0jIMsnIM8gqKSsoqqmrqGppa2jq6evoGhkbGJqZm5haWQNusGWxs7ewdHJ2cXVzd3D08vbx9fP38AwKDgkNCgc4IZ6A6iCBNOQDW2yWmAAAAACECeXicY2Bg0IJCP4YzjFKMZYw9jCsYjzDeYPzGxMQkwaTG5MOUx7SI6REzA7MFcwpzA/Mx5i8sUixeLHEsRSzrWN6xmrAmsc5h/cBmw1bBdoWdhd2KfR77JQ45jhSOHo4zHH84vTibOM9wcXG5cG3iFuFO4J7EvYb7GPcVHhmeAJ4qnm08T3hVeCfw3uDj4bPi6+Pbwi/Hn8Dfxn9KgEfAS6BOYIXADUEBwRTBY0JCQk5CAUIVQm2jcBSOQnpCAJ9YMaAAAAB4nH1aCZwb1Xmf90aa0TX3oVu7knZ17a60urWXpL20q729u/auvV7ft4PxjW0wNhgcYyCBBgIEaMIRSmggYAIN5UgCbUlJmqZpmgZajkBLocTlTmjjlfpmpL0MrX8/reY9zbzv+3/3940xiLkxDITgNzAcI7HwYwCLtJ8jNdj52GOE9l/bz+EQXWKP4cq2Vtk+RxLgQvs5oOzHOTfnj3NeN9C/8+KL8Btz29xwGsMg1gnOgFXw25gBkzBM8PuSiXhMEhkQX7zcbjdGm432b1a+wJmbWyxtbXLbzfPfGIZpsVD5CPg6fABLYVmsFxvGJhCvLlwSCa/H7/PjLqCc5E0rS9KbDoNkIhWPmWWzoF7mQJxU1uk46fN6GCCbcRo9gX5Oo4fleCxNZtF9wGZrCup5k8A7bJpc5zVQgpJgNqCvcB9rlC2iVZNv7cwCAZAOXgaCyMuMiDe61vjDwcC01uvXmG2mOtwThIe0gpvTc5wtSJc+8K9pOlx31XEtOHoFGXPQjNNGA9413JUc5aJNEA8PkfjvJA4w+r6Qp0ku/cknslB6z/DuW4ae5qiCva78Om6GVyC9MJgd82NxDDODOMBjsoofCTIlxFLJBIJGIFDa+c14TCaX7D8O7qsrrU5kCoOxRH9fur7G2tAs18I7+1PJYqE103MiUGMNJcQaN7x7bjO8a+1occNMcXBr6dnegdX9M/2Fvrv7tqzvLezc8nr30OTwps5CH+LIXv4AvgjHsUYsjeUxrB6R8yfTEg1IRaopRcM0QOz41b/JxLxqEOukf5E3UlUHegL8ZkXoR43jM2NZd50WJ4REbWN/Mr6ne9WmH0asg9m23k18e8jj9Dl1rV0belZ3PLA+5jSZKJqZOLjHpdGbAvZYSyq1ZfCqbKrFGuloj075uJreprjXZonuFieac0M9yJ4AFgBnsOtUu1xqlSMX26B673DZAVLwJoxCC3PFbkgVBghSm6fXrzZtPXQQ3mSb+dnpPS+Pmoufnjj5sfJc+XzZgf268pxqoATpV6zM5yd2HDy01bR6/fRmeFPPxydPfFo0j7685/TPZjCVXh8WhZOwAzMi3uLJuBSXvJI36e37oOGjjxo+AIPo7/vvo/sS5XHsBawH45E9JNWTF/SOiCVCMb6GN9cKdanVj8hczswzMsfb43WxDehZH/YIELCXkQaxNDrfd/78yw0K7dbyB9i92LRC27zksD2yyyWjD6v+RR/l3pbyUfA0/IFyBjJHL7ipofRgCP7gwo+R37vLH4Cn4OXoHBmh+EJLZc9PHD06MXbF0YmBlpaBgRZ4+dPXn336qRuuf3ruhq/deectt9xZ+qUqj8HyHNiMzkI4tehJMplOJTlkPek4J9YAsDnR2ZlIeC+jeze6vWEcx1k9WQv+a1homp173kPo1DNkdIbCj7t6RhakqxJTtVJBSRJkPIaOBQ/1X3NVn9Can13VG4+Ns2Z2W7G4bf2G+NB7vhpOQiT8hfzsqe50T29Os3Ldxp6ey1ZH1tmbEJ0Iwv0YotOo2NXCualF/EpUildloGCoSmMd7xzPZoaSmeL02d29/YKRkzP+jtlcc73fKFr2pIOBPvCuobc77/cXQtoNgxtPu2UDx4d2DeUnPALPr8gEY1Ekdwei/xNV7oyiFa5iO+5k2swRJChYdu3qKmOXXXemH15e2hh+7jn3I/eA+LOHVRll0bN/Dq9GtoEBJUpWdf95vgnSK1QEdcUNIzqqMTy+/8Y1sUmeNZKFhsyqqbwjauSESwabDQxM4X8h7V2z5YBXMkja5MauwizPgryGQvSiiN5D8ErMseBX8di8XJaSBid1x2/tT+xtbeRYY627a2r7+MrdT8ArhchbV6+6/NzgJMnSW6Ym9l67/+xbCo4w+vM9uE/xO8EtEZD0pgQ3wuMNg6s839O7m28ufWSFOhnu49pLQvrvwVYqhFwU667arIx5sQh6dtH8SdV9K9ws2I0kusB83FLk8jdHN3cPrWvPrE1csmJyS+DBYGNHKprlVxjjjYVkulgEmfbt2U3j2VSXo3FNU3H3bF/DxAqh2JDs7Y5amzNd1mJHR7HY0t6vYGgsnwcPIF6caEEsdetqDKmETSVgEo6a/PovDU/tevYWzYmvFtrDrZkwywPIXDo+eeDsnjvflmTrr+7asW/bZO+kFlNychr5+H3gq8hGzAhlYlHW3JLrdK0s1y79gNXV69Jb1QvlrFj5S9iP1bNcy8/C1YjkJZewnpsPHlQo5hbpSmgCM9XQUvIrQcoDLEw1SKk22Y8V4AQMYASGNYFkvUQBODH3KTSWmsA/Fl7zvxr58QsX3ydokaE1gX5onPsU/LIUhgHlvuefV7E3IB0PqnINosjnVQyt6ouIaSUNKJqmIUkwYAnnR2XOIs4Mj0SkGp4J5rL7o87mgC8GDZLTKaHPLd80plOpWZ3WHVyzu8nT4dNpCc/r6k/og+iWL5Tn4N3wFqwO5W9MIBXl1QCpGs3SQlxwgYW1IrgINII3xnCTUBB27BBybuoN56ukiU3Hx8biXQKjXaGbnQaOdwyETge0LISsFvfAtXN/zpm0HIPjjAHX6Qj6dRnAUkmxbapchhmE24bVY82Ig2S6moRlNUH7vSpZDiWnJeGJk8T5a6rtmdq9h7/0jcLR4i/6cgJr9JzgOvpWjg/76w7lN2ze5oWzHG4Y7h9qDp1KzTQB1qSRnODfWBr/GB/uTHfoS797Y2h169gw0hXSAVyNeEF+X0+QFetWQ6VZJpGPLpg2XG0U88fu/sHUraumVwUIVG+t79559vKj13ee7eixPvyVqT+dYa3N8daOh6+75evXYKp+TQjnL9HZViWKCQlfBCRlhFQpFRdhpsXFUCZdZuJ68j/wbdq/tbNuxwMj9/5khKXGezsPPPz9b6Uc0G8RcRMLjXLr8JbMuoczGpbDRYelNn3bbdfcLvlU27Mg3R6FB7F2Fc+CDrkKdQQE4TF7w7ABeAgnwqmUo+qWPwwalPjRBmIoH8GjMn7Fgw9e0c9RRrq44pnnRnFIoaKTe4cz/ZZjNZSI4yaZtNleYm2vuYIN9nvXFnGc0wKTDP5gkQDJ43hNg7s2HaEF89tGodDW0d4+InP/LXNCewfi01y+AG3wAJZcyKOLXLrnuQT/J5co1Tb09s425Tmjnm1rAoPTDRBQsqvmnznTL3hKw7IQpyVCdD3FSXmNRsOSkBHA72UJkjyEtqTfNhAQzK8Zhb76YrK1V9SVbHpIKvEa2cOnSGfII5WA6gQijc+HvBpALsS6DrAgUfhpJ0dpmNEdmfuf/+fvXLtaR2fP3vitbx/5OsNuGI5tHgFaEproS7025LCP3HDrM81H8Fvvv/7oE7svZUxIUBqNojcRyeNtpLccWiycLCkhnVvinVnQAdzSso0lqpVUht2w2WBK+k4F6voonZ4fjm1vTWZNutIdOiqbbN0eG2YNyu/XNtQNUTqwHWZEDhAsEpEB0kKJknicrqxEy3/8h1WABmVF47wEPll65/uVmGgrXwADiG8UWNLc/8f49UZ62vhim3eaNhqY6cDevYFpxpCCWo4GehaZjh6Y+Lk/ckagtWg0Fi00qOeXHywTgEfneyv6QIcq+lioAVT8YVAlC/gorbOlkulglmcsDlF0RGiSltusWzbb4BY9ZIWSr7B3XZQL8ZKV75y4HfyWZrWQQPQVf/UgHXymYun6AqtcBmuh9ktEgM+PzFO9qtxEAwZolRAK6nwzM74cjUw0Z/pOyNvNGIx0N/hVav36VB/Lvxv2hqOPp+h+5+ysM7Iq+1MQSHjFhGKtekhzUMcZoCIaVg+M3NxnLAWNivBNUEcyL/gs5uBtTbweqQfdofElvjvXZMH1qk4MCEcXwoHqy/S8Q8fJhWp1OZxf6IXZqfacmXWOP/13nTM2ihpO3Z63rWKMTRTFd7Xcr9HQFM5Do2CElEKLgnqponuy/BneguhEl0kLB0olvMQ+/SoxO1guQbxlQyS7ot1seqP0e9fa9t74aNrHzHCj3dbXXopGm0NZp2zkVyoVtEkrOsE/zv0arpy7EMFVvAZSsEDWiC5LLPhAYYqwOEutNZKGQ3yZyh+juHsQa1Dxf95XlOgO8AWrUXgyC15wi0mo8OERREfbEYljwF8ZAMevcoyNOUKcDhgsJb7bylVEbiBYGXw/HNboOQNbEsDzDraqCyi65l6EfCUHKPHkVbUGtiApLUnjYDHu0wBce8dzz9939kfPlXZ+ddeJa288MH4oxT55w5kfP3X2a0+AtsvO3XXL2e9O34awSUi3FtR/NyidTG6xLPanl6TKz4H2Sxu9X2GZvZv2jefchM3RMTG7xctTcnEy7t2SYQyRFNwHdWB/YeQSP6Ef7ema1c29zVBaltXgrA5nBfCqz0YoeCLlBPwdwsMpHq9dbKAJUjZLHt8SVASYOvXtn9x+5qk/uWb6lSMvlF69avfBa0/u2X0DI35n810/f+6aI09YtvRJG8C3rn3o5lN3nHtUlZeC7yqErxFLYFgOVHUGF6GSZhcwq+BwXzUVqCtBroCX0k6B9TeCRv5+kd+1va1jT1NbLNQRl+7g3BnBEu3vHm3/y5dmhlneROBcLfhVjY3UMUAPBkbaep0vDLtJFgBgrzlvkQkT8jcwTX45OwwVe/eheu0JhL0OLaqJwFwtxv3puAtUkPvnBz4kOOI8kCq2za5feWjnxjEjrd+WbVvRObhjfM/0dIsGvHoqG3JnmqMDxcntkVsH1heije3+1HRL39rG/ap/ESiXr4f3YDGka+VARMGNOh1lkEGKiKaSCy/WtddHVKrHdIjUkSY9awan6mQDoaegzkgaa5PHKWkkuf0aS8HJX+4OBXidVgtP22SeNJpp8U9ZZ9Q3N2fntZxiyjRhtkIIaltsRmPV53lkz/ch31Ly47wzK7i5hfCH6kmu0p8sRBpQm+OZsZljK4NtlpERa6u84/ixUwa6r6t3MzzI6qDZWrpzw8p9XwNSQGdUY4wmVPqHG67ctgFcZpGgjsXVXDBXfhc+Mp8LCBL3LvdhVB/YlTi8kJcfSbmMb0ufGDkm47l0YzRvk9knv2Ww+wL2DdtklA8I+9z3YN7Go6JK8VtA0YyvNACecZqQ6WuVpADKfyj/J34FollENO1LozwiiDgwgmVMKDWKkPYv36kB6SVcoS0SvH/sHskaNPR0si6G1b0snbpeel3gGKe1mK+L6OQnduwQeSrqOBmTW/Vyx6iW0XmsXf1CxMOD9aWPwF0pq12rU1ODlpfnngE1pd/CYNiiISvpQkelS5nX32+0VvKHEeiNyZsfRWmfAYR6B+lXdKlFvvZX8BDWrcpzeVmRA1+IYnGHAeZllpfwg7HjUq3YkV431pu3Nthvf9Iu0d0tN/YFOrzSldfR3pZUYYM94Wm+/bmgI5+dKY6FHRILDPc6BE6ApFpXaD3evy7ViUjj6kpmnY88wdOyjlLXRP6lP6Y1euWa0Oh1Bhnp5zPkI7cjDHFU75qXVEkJP+67SC0Xsa8Wd+COwQP1k12DnMyfC1gaxQOzwZxd8/3vMta8fuO42eNK36MjbEZeSUO4YPozZGHGdrwiRA2jJUq/+0ymeA0K/BpWpxl+0+iqvd9ZiRUX4EZ4t9pXVFIv0KJWzptW6lg5XS+BuFpnb9TcOPVPV4JnSucDQb/H0MZpQj1ga2nwh5fMNpOPPo5rDHBCC+mG+F8wOl4PtOLcM/xwpuKLO8sZ4IP7MFqZzUlKQOJEF2gDknfns131Fp3ZVngW7pMo99zhgNcoqz70XjmDPVR5xuxNVgsoFEiT8YeeLdjMOqGh+4c/kY3eAPyyizNXarD/KZ8C/1N+QpmtkW7JTUCshA3GsIUe9i7UcweUKFVvVv1eGa8qw4nqfKY6bVW7KiRyJU76k/OzCvBVyhmv8aaTgc4DW+pc3pgWOlmSSYzUZzM4r5f35setgn0wR/Z73SFbMrKrvqc2GAlxFlJHrwpHUz81W6nCduu4R7CmFX7Y8nvgZdTbSkr1I+QAt5ghFS14EVhhYbZDSCx+ckV2xbYjqxqDPpKVGXllOnLbqq6GVriNqSn9xrt/atNBngvAoN9WMjfGH1ixy8Kqsm9CuL+McNsV1FWEy0hV2gRwGtQPJEZ27tmV7hVYm8td19A52dK5usbvPTazeXutnZZd7tnC2DpMnVO+B95BvNuUvhx1Af6kOlZEiZUgk4s0zNySmUsKbLUm8wmrFBnMJArBzg2HRkbi+XTr0GSuph26fVaK1fJzj3oYwHJEWBL3D81eYy8991Y4uWNyYJZTdRhCWM4iLKKS0+vd1YPT5sVZj3ZeYOBU6V18ZdHb6tEULi1uumQyv7L04ZP2QLwx/0dRHNnkqLVMHZ5ce3RFWJKyLeoMcg58DWFSZpBmiZTEZb0MgqiEjixURt5VwdFQEr9/9clQd6570FfjoMRkxEJni8kJiWP5ZovoYwlwAvdq/thBKPUWQxJi/R80kBFlUX/JVEOI4XWSzZrON2HKrMFXugDOI2wprBMbRjavJud0amH0b66+GkCKU8iTFQUupPaq1AXPwmQNX1Lh3N8YkxxWR3PTbF9t2GllTE6bgdNzptqATlq51p/dM9k/lj7cM3Hp365PhZpSmb8c6ZzYtWVjb5ePC4ssr9OZ7J1NnWsYHpVZtMzoDHjIHdvkojkPDtuafMWGzkAOvHKmo9CTzQ3MfejPZMPN3qxqfwzquz5Eco2pk4WKpaQqDra8Xaz44EU94xprNNRjKU4lO3VcY9bjzQYpY6zR0+omTT21o6O1KUoHg3bJaIKe0jfX9ud/YzBq1D4QfXF/H4r5Q6+YDDin7uCkCdkQLF/AXoMnUZ3rvmjGXu07OpYYdA3YyzmcPGexnagZHa3J1Fjq+tysnorDkzaOtVo4zjZ3hXI24XrPIutoPlU6zdC4Sa0PDdjtKh37cjp4tdKtkCDInaLZKnJmc6fPIwcGapl8GzxpFdEmL1ov3Fo70w/GbZxGkKKlxvYD9Qu97GtIpq1LZvuJsGZplblQUKtkYlmovGKKS0o2VDu+13x9fb6wzATjEkfzBsZXk8vV1PMGKRhPs2Kg257/aSE1ddphoxqVPk8D9YQU65b1X7FSuJoCCchYwYdmhqAN3lKfJeXUiwaWJcOD97hRIVSJ+9ryHPYW4hNFdPPnmVJ4fSuazUazlMES9HWadUxSbaNwAwMuSKKJ0lnn7hOMSrOo1HMX4EfgHsU36hfs5SJzqRrRF5iWSlGqzMvm43v1FhhxWsRIrCuq4+OxTFva6bA2+5omKDoeiyWSTpkRvPEmobG3PhKzevrCbV1sU6ypPUARWkZ+vC3V+qYkadR+lyQ56VysPWn/mYXH1R1Cy0u/sQpalurYEPA5mry+vq6X6nFUNODVGnUOfIIwhRf1uIBrcdC5nP8KOPBJAv1Ly7GGfIelrb6vrz4pWmvz9axvrfeAgWlU5KjD6/66MdHxMUvQah+I2/+mRtbyzOAat/+6FwUR1ykx1Y9i6q/n59pL3175l8SPz6aOHdu89vDx/xzJ5idG8r1D7MHZ1Ycun5k4/OLExm2Tq3ZuqcwRS2XwCngc8yiIhMUs8zmzjCgvktJx55Iu7PqpFYNrj61v6eCs7f6hXDzE6KkoHgvSTFciPzmQ7QArsrvXzJxw/opiKi6uwykBfFoHdbTkMJ/8l7rI+p6pTSofLsTHu+ABrEaJ5mDRDpa/lamaIL4sSb0bb7FORGSxtzC6//BkuMnFMKxW0DOhE8PRzMj6XDZQKmsq5ew/NZwaW3WZSNmccw85rLgeHNwy1D9bLBxW2i6lPwRDiIeQ8p6xaoVV2LI0/46rmoEXDVaKiUbOaYf+hMhrhH6HbJc5hhMpOcQ5hlOjgxpEWbT9SOQJgqHrQ6n+um6HzImkvl98AEUJZHUK7TTSaRfSqQctlNGwkiQq5CJgvv2b7/6QLVn0WUuxObpvrK0/bODoQqC2cV1Xy1C+JUiAWk+q217PN4wmem37kp3BmhavNR2It1mmEB0vopMCb6I6ANV15rSSNZUsVSkzOgCpdHdZcIcJnDljdXia9VI6kqhN0VSDH7y5G6/T/FdTwEFbpPjgm0BHEnxE4Z1FZ/4bOK6+GYmrPZtSnqHYpSqrWl6oLsGedId7WlzZu6UoONPYXxfrlBrB8VKpORD/UKAItvSKh4FM3ZDPP9DxDzylm68R3wWvgZOqbPCLe6KLegcagOM30LeZaCZonlllzwr8xhlD0E9Nj5gzLA3aSw+DlRYa11fcy0SFXn/TQtsJterWQUal93vUC96L6KVQkv9/eq9K2b+098K9ftKr9AYGebjLFRC0V4/5jYwu5BhdaY26tJu2ETIVlDvbHVaXdBO7cqf4GGU1g5OINKFh9MbSB/dudzCg0nyRLEmVyu9TJlaEauul1UdKT/7852CbXZkoKnKnkb0+i/jsWppTIqAilaXdlu+LBZaqSqzSboFnfS3tdR4rMzZg9LsC7lzUYa+Xi5sbmVppeMBax5pbM5TD5Ryng5TbXCfnjjhYhzpQJE16YetW2sDr1Akuqa11bT6SxBWueS1uoJ19RZ4SUderAQip1upaeaeHqMxgMbysBw+Bq9VaY1Gyn++GK3V/dTCrZEZFzHiuvi3UweBbZ7V8pingjdXSIv0dLuZoqKd4nVZn9FgNx3R8PbgaETfhRo2+9BaAlNGioVm0o9dYfaWuSHNtnQYa2gpGzga6zVqjypcVxfnT4BG1Bq/2WAof1R4rB6o9Fjgtr1lxWRK4zoaiTlNM0Ir+N0ofDxYyHuHYcRxxvUYDXOFvcEbaBDRS6VGDL1bB/e+ov2JRr4SrPuP994YGuO/Ci5XfitgncAU4pkR3EK/8rxL1bRHprb49isdgu6TpjFvi7cWs2e2nJU0uKhbXFBr6wdFcgbW6+GAk3yv7XOp5GLDg74CU+v8X3Ek3/s4FZW1xYf8LwzH8FgB4nI2OMWrDQBBFn2zZwTikCiHlFgFXEtI6AWNSq0xhZPcGL0IgJFjLt0idk+QYOUCOkQOkyJezRYoU3mWYNzt/Zj9wzRsRw4mYcx94xBWPgccseA0cS/MReCL+CjxlHt1KGcUzvdydpwYeccND4DEvPAeOpXkPPBF/Bp6Kv9nS0lMrGhwHSt0Ctm1f9407lKWKjToVJyn2eJWuOjV7QUF3nh6yl8JhsKRkymvF/7t/e0tyElYKK73lSeu6ti86Xzlj08yszR8PqpZ5skpsZiW8xPNOHc9RqsGj0W+DL3bOH+uuNXmaXbTnB+KDRDgAAAB4nG3UVdRW5RaG4feZiIRIh7QgICX835xzfUGJSHeXIKJiYzd2d3d3N/bu7u7u7u6tjj3Gz32y34M1nrHqPruKlf+dt3aUvuX/HOv9zkXFSofSsXQqnUuX0rXsUbqV7qVH6Vl6ld6lzztf9iv9y4CyVxlYBpXBZUgZWoaV4WVEGVlGldFlTNm3jC3jyvgyoUws+5VJZXJpK7XiJUqWqtRLozRLq0wpU8u0Mr3MKDPLrDK7zClzy7wyvywoC8uisrgsKUvLsrK8rCgry6qyuqwpa8u6sr5sKBvLQWVT2Vy2lK1lp0wdtJs6and1Umd1UVftoW7aU93VQz3VS73VR33VT/01QHtpoAZpsIZoqIZpuPbWCI3UPhql0RqjfTVW4zReEzRR+2mSJqtNNblCqUp1NdRUS1M0VdM0XTO0v2bqAM3SgZqtOZqreZqvBVqoRVqsJVqqZVquFVqpVVqtNVqrdVqvDdqog7RJm3WwtugQbdWhOkyHa5uO0JE6SkfrGB2r47Rdx+sEnaiTdLJO0ak6TafrDJ2ps3S2dugcnavzdL4u0IW6SBfrEl2qy3S5rtCVukpX6xpdq+t0vW7QjbpJN+sW3arbdLvu0J26S3frHt2r+3S/HtCDekgP6xE9qsf0uJ7Qk3pKT+sZPavn9Lxe0It6STv1sl7Rq3pNr+sNval36d16j96r9+n9+oA+qA/pw/qIPqqP6eP6hD6pT+nT+ow+q8/p8/qCvqgv6cv6ir6qr+nr+oa+qW/p2/qOvqvv6fv6gX6oH+nH+ol+qp/p5/qFfqlf6df6jX6r3+n3+oP+qD/pz/qL/qq/6e/6h/6pf+nf+o/+q7esmMysg+1mHW1362SdrYt1tT2sm+1p3a2H9bRe1tv6WF/rZ/1tgO1lA22QDbYhNtSG2XDb20bYSNvHRtloG2P72lgbZ+Ntgk20/WySTbY2q5lbWFpldWtY01o2xabaNJtuM2x/m2kH2Cw70GbbHJtr82y+LbCFtsgW2xJbastsua2wlbbKVtsaW2vrbL1tsI12kG2yzXawbbFDbKsdaofZ4bbNjrAj7Sg72o6xY+04227H2wl2op1kJ9spdqqdZqfbGXamnWVn2w47x8618+x8u8AutIvsYrvELrXL7HK7wq60q+xqu8autevservBbrSb7Ga7xW612+x2u8PutLvsbrvH7rX77H57wB60h+xhe8QetcfscXvCnrSn7Gl7xp615+x5e8FetJdsp71sr9ir9pq9bm/Ym52Xbt2+bcm2SW3to9Y+vH1k+6h3aX8n2lf4rlW1r/qup3XuNdpXK3etXf9rNXetVtf2Rlsbs8Z0ZjCTWTHrzAazyaRWo1ajVqNWo1ajVqNWo1ajVqNWo+bUnJpTc2pOzak5Nafm1JxaUAtqQS2oBbWgFtSCWlALakktqSW1pJbUklpSS2pJLalV1CpqFbWKWkWtolZRq6hV1CpqdWp1anVqdWp1anVqdWp1anVqdWoNag1qDWoNag1qDWoNag1qDWoNak1qTWpNak1qTWpNak1qTWpNak1qLWotai1qLWotai1qLWotai1qWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJY4ljiWOJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYElgSWBJYEliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWJJYkliSWFJhSYUlFZZUWFJhSYUlFZZUWFJhSYUlFZZUWFJhSYUlFZZUWFJhSYUlFZZUWFJhSYUlFZZUWFJhSeXV2wCBC1AAAAAAAAH//wACeJxjYGRgYOABYgEgZgJiFggNAAI7ACYAAAAAAQAAAADknZ5eAAAAALHacr0AAAAA5NlgoXicY2AUYGD88ncLAwOr6L8/DAxMOxgYGBgZkAELAJEDBYsAAHicY37B0MbAwKzA/IJZgVWUWYGhmqGKYQnDOSA9AQgfM91hcmc6wZDBsBQO5zEsYlgPYjFOZJzI8AMIlzL0QOXWMKwFk8hwKdA8CK6HiqwGwmagGeuZs4Em9CBjhgVA2ANk1wPhRMZcxiognMhox7iYcQEYzmMsYljPuIzxFdDNo3AUjkK6QQAydnOR')format("woff");}.ff2{font-family:ff2;line-height:0.956000;font-style:normal;font-weight:normal;visibility:visible;}
|
|
@font-face{font-family:ff3;src:url('data:application/font-woff;base64,d09GRgABAAAAAAdIABAAAAAADmwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAG6AAAABwAAAAce1FxvUdERUYAAAbIAAAAHgAAAB4AKQAKT1MvMgAAAeAAAABBAAAAVlSvX9JjbWFwAAACTAAAAFoAAAFaAVkLKWN2dCAAAAKoAAAABAAAAAQAIQJ5Z2FzcAAABsAAAAAIAAAACP//AANnbHlmAAACxAAAAa0AAAHYZQtXdGhlYWQAAAFsAAAANgAAADb4fxbGaGhlYQAAAaQAAAAgAAAAJAU1BB5obXR4AAACJAAAACgAAAFkMkUATWxvY2EAAAKsAAAAFQAAAMApfCpCbWF4cAAAAcQAAAAaAAAAIABiAGZuYW1lAAAEdAAAAO0AAAG2YVYLsHBvc3QAAAVkAAABWgAABEbQ7vVrdmhlYQAABwQAAAAiAAAAJAM0Exx2bXR4AAAHKAAAACAAAADIm96VkgABAAAAAQAAnJ6Lj18PPPUAHwPoAAAAALHacr0AAAAA5Nlgof/2/+kCogKaAAAACAACAAAAAAAAeJxjYGRgYJr1/yUDA/OL/9/+/2RaxAAUQQHBAMdVCFZ4nGNgZGBgiGcwZ2BiAAFGBgTQAxEAEMgAyQAAeJxjYGRSZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM8AAIwMSCEhzTQFSCgzlTLP+vwSqnMUgDlMDALmpCi0AAAB4nGPMYVBkAAJGXyD+B8b8QKzONPv/N+YXDAyjmDgMCjtcAAD980x6eJxjYGBgZoBgGQZGBhAIAfIYwXwWBgsgzcXAwcAEhAoMGQz5DOX//wPF4Oz/j//P+T/tfz9ULxQwsjHABRiZgAQTAypghFhJDcACoVihXDYqGUsxAABAlg6DAAAAIQJ5eJxjYGDQgsIihhkMb4YaBAC9kVO/AAAAeJxjYGJQZGBg1GKaxcDMwM6gt5GRQd9mEzsLw1ujjWysd2w2MTMBmQwbmUHCrCDhTexsjH9sNjGCxI0FFQXVjQWVFRk5Xxw/zjTrb5oiUwTQOAb+/38YPzJNYTBiYBA2UVM3NTM3FjQzNhKTZRQRk2cUVVNWYjc1t2O0ZTQBMtnYRVFETaMkDbVcJDzDTR05BHXslJTtNHm5jXSUrBTZeVwU/P0VzHg5mDSlRbl5mJT+zY/xcLjBxc3CJcDCIgCkBM9rGalr3eLhYhYEizCz8zAwMaj//8B4jbGfgZtBnIFBXEnN1ATkGlERNnURMWMjM1OwM36EV1Ulx5TVvvKzcwj2c3D1ESiJjSytjg4uOx6cmBYSlpnCAPTb/2//XzItYmxgMGNgYAZqNhdlZxMVERc2V9dj1Gc0RRYBmYsQYmdWVmdXZgaKcIn5OslpCLM2Bahz83NoyfiHShrKsSalsYnxaoo52shIyolOEAjNFNnIKynO2MDMLMDGws/J/e/DonQZfkYOAaAAJ7sAO++//+95eQREmNhBIqyc+v+2nTvHmCbNzAx0JgDXfF/3AAAAeJyNjjFqw0AQRZ9s2cE4pAoh5RYBVxLSOgFjUqtMYWT3Bi9CICRYy7dInZPkGDlAjpEDpMiXs0WKFN5lmDc7f2Y/cM0bEcOJmHMfeMQVj4HHLHgNHEvzEXgi/go8ZR7dShnFM73cnacGHnHDQ+AxLzwHjqV5DzwRfwaeir/Z0tJTKxocB0rdArZtX/eNO5Slio06FScp9niVrjo1e0FBd54espfCYbCkZMprxf+7f3tLchJWCiu95UnrurYvOl85Y9PMrM0fD6qWebJKbGYlvMTzTh3PUarBo9Fvgy92zh/rrjV5ml205wfig0Q4AAAAeJxtzsdSlEEYRuH/DAYwB4yYc8SZzoM5gAFBxezGcsHSK/DiwbKqz8qvqqvO6n16GA3/buvPMD/8737+fQyjYWZYHTaGH4yYYQc72cVuZpljD3vZx34OcJBDHOYIR5nnGMc5wUlOcZoFznCWc5znAhe5xGWucJVrXOcGN7nFbe5wl0XuMWZCIJLIFCqNKUvc5wEPecRjnvCUZzznBcus8JJXvOYNq7xljXXe8Z4PbPCRT3zmC1/5xvfZ9V+/N9c2F8c9Jj1Cj9gj9cg9So/ao/WYzvXBsTWxghWtZGWrWNVqlkbQCBpBI2gEjaARNIJG0AgaUSNqRI2oETWiRtSIGlEjaiSNpJE0kkbSSBpJI2kkjaSRNbJG1sgaWSNrZI2skTWyRtEoGkWjaBSNolE0ikbRKBpVo2pUjapRNarL1eXqcnW5udxcbu4195p/bi43l5vLbboNFaoJZQAAAAAAAf//AAIAAQAAAAwAAAAWAAAAAgABAAMAAwABAAQAAAACAAAAAAAAAAEAAAAA5J2eXgAAAACx2nK9AAAAAOTZYKF4nGNgFGBgWPePiYGBVfT/SwYGplkMDAyMDMiAFQBwhwRkAAB4nGN+wdDGwMCswPwCgllFGXoYJzIuAPKGFAQANmgRkg==')format("woff");}.ff3{font-family:ff3;line-height:0.689000;font-style:normal;font-weight:normal;visibility:visible;}
|
|
@font-face{font-family:ff4;src:url('data:application/font-woff;base64,d09GRgABAAAAAA0sAA4AAAAAE8gAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAANEAAAABwAAAAcpdApX0dERUYAAAzwAAAAHgAAAB4AKQAKT1MvMgAAAbQAAABDAAAAVmMoafJjbWFwAAACRAAAALYAAAGilsycuGN2dCAAAAL8AAAABAAAAAQARAURZ2FzcAAADOgAAAAIAAAACP//AANnbHlmAAADUAAAB2YAAAl8wabVg2hlYWQAAAFEAAAANgAAADYlODMcaGhlYQAAAXwAAAAcAAAAJAryAx5obXR4AAAB+AAAAEsAAADMGKEKOGxvY2EAAAMAAAAATgAAAMa9srtSbWF4cAAAAZgAAAAaAAAAIABlAFluYW1lAAAKuAAAAO0AAAG2YVYLsHBvc3QAAAuoAAABPgAAA1IdsRh3AAEAAAACXrh9rVNOXw889QAfCAAAAAAA3FkqXwAAAADk2WChAAD+SATRBh8AAAAIAAIAAAAAAAB4nGNgZGBgk//nwcDAcpGBAUwyMqACFgBPbQMceJxjYGRgYEhi0GJgYgABRgYE0AMRAA/UAL8AAHicY2Bkucg4gYGVgYHVmHUmAwOjHIRmvs6QxiTEwMDEwMrJAAOMDEggIM01BUgpMFSxyf/zYGBgk2fcAVMDAJPkCOAAeJxjucjgwgAELBchmCGN8SVDN0Mnw1GGXCDuZtAHirUyHGQ4zFANhocZNjG8YVgAlD0MVLWPMYvhKkMzkJ3CkMFwmmFAAQA0RBToAHiczY45EgFREIa/Z18GY9/GegG5VElEMrFAKSVRAlVEDuIAynIGgVDsBA7SnhnDuIGvqvvvrbob8OOYheLFTmfKzgNstZYwdSVCkw5d+gwYMWHGghUbET3hdHq6M2TMlDlL1iLykLvc5CoXkLOc5CgH2b+vOCTxErN9HMPWBKgQn3Hl087HL8p53UPgGwbdIBSOvCTqHokb9nb3h5SZzpDN5SkUS+VKFatWbzSh1eYfeAKIsyCgAAAARAUReJxjYGDQgUIrBj+GGoZFDLsYbjH8Y7Ri9GPMYlzBeIOJhcmEKY1pGdMJpmfMTMwyzAHMRcxzmM8wv2HRYPFiyWFpYFnGsm9gIQDy6UA/AAB4nIVWD1RT9xV+972XBGvreEBgjlYJT+BQJDkQAiKgVhGEUjrAAgXGMkCG1rRQjzKlDikn/BExOISKpR1lHcXIusoshuIJKrBToQwRAyvQIeV0LQydO1u1SvJj972A2rOes5fk5P35/b7v3u/e7yYUTUVSFJ0jeYliKBmlPAeUKrxdxlK3As9JJZPh7QyNp9Q5RrgtEW63y6RgDW8H4b6aU3BeCk4RSXuQdXCK5EleenA2kh2kKAqo3MWtbIjEgrgUqIFnDpqtt7sllvs6ioZZ5PyK9RE58SnHc/iBWSserA8ZJqFkSMSoWpxhAyR3qNUU5bUKeA+Kc6QUga5uciXwnjTn6KQODA5hA15oTifTpAc2wzPpzS/EGpP7env7Us/EaHx9oR7y4VVo8PUdithCrpFB8hdybUsERVOVFMUmYnwOFIfoHsGco7eC55xFDl/g4Dy12H91kdLmQDJEkovESIZbFmAHPL+wUChRkZPkCHmT1CEAxtmHWPF4upKinBVyVMT+6WMO2HbSx22v093WQonFSKKMthkjrtctzjAXcT0yh2jWAGah4RQaBeco5T29delX8gwFpJSOHrmnNUfMJyTUDTCRRqsT+fvcepQFYxf49ouxOyM9J+wP8ua9FIGs3IX1A9TSMHfsncZqEgfnHwBNFhfm+iUq29BJvb62ZWbiiy9trQ/1jUV9ffBC1FQqd3FdC2sAYTASn6XYgrxVoARN0Dp1oCvzn4zOTEOLrm7P9UvkO+vuG6/sG8xrMO4/sffaRXhqKtksaR4MC9cXZOfxPw64/rHlpr//WExkZVH+AY/VKnPTp//yQV4Vxt+M8cuW9OI5hYrdR/wHiB/K9MAi8aPE+PBgh3HdkxTFqd1BeDP8SuD7DMaRNkPfVPdAP7bUQiTjaZ1kzQ/8mEJrpaCPHvPi2SKshy/C2NMSWkUTwvEabCRPb01QcBhoxJRlmk2YpavbGqDNEe/97tDeUx9CZ2fYn46c/Wzh3/egrDbzUnpuV2pVX4S3B60uyN+VP/KJb5ytpCXn55ebu648U3YwOMjk45OYGFgrcF9G7lSpC3I/jdxYlmV2EGicOEdaUFaOLc/UV+jLjh4t01fYZta/ndv/zexAToPSZKJVo+MTlhuT4/SvElPJVfJP8g/Sl5JUjaCoSQ/ie2FuP+iJ5URZr9h3EomVTIAXsAmn42Nqf/aHT7ratKeeC/Xzgw3ggq8Nz66//NzGm9eGpsM2YdxFiOuEFI5i3IIhRaXsLnMFEVcjpsOkmUzKhpyB2bn+XafJjyr0+qoqvb6CGaa33Z+vTkqBMJCjgUJSyMrR8ckblolxagk/FeOWi/hyxVKk8uUcUBuZvR5sqnWm+8PUS7rdPelkgYyDx53Reyb2RIW+zZHOTJNe+HRD6AVMIxSc4UnYQv7W13zmo0aRg+xgnR7W/THtnV3oR/0cQT+WmJtGzaSVl5QfN1QUl5tufx3XkpTVtK2uYv0pXe/cXO/eepWJDh0aGxsa+nycfGEl1qfdO5Trmz9yOJyZARtBBg6wMTnthL1fe7Bf3VFD0ZU8Zw9AnG5ii7HunXsKSqpMpoDWfWfP0B22WLrjreMXztrKpS6297XZ00IO7YgRiRgrqKcQRZwjOBkUoJbzQMEY6Kyvgo5Mw1qTidVaVQYDs5XeNmvnn8e97WLvUc5qDtQrgAcZx8+bYeYmiQYcklmVZqmLtQiGSZotit5aQjYL+5pw3xPStSKjiyuWT3CIMJHo4vSXx2Z//zH5HKag/o1fN964wtyvEbl0uOc11NoTL8TsVsNjGT9KXS4+pN/33B1b/lqrJuqnYa2hsTGhH3ygyN4ct4u5vWP7MJmyFdIlt/YVfWUrpkvu5AvfrFYbvjlqWVPk+R9N5f9HU1bbKkoqzHrsvR1iX7ghynJTYDf7LBlSaAY671hNzbHqmprq2Xt352bv3mWmxkctExOW0fFGcp18ieqNgD8I41GJmGaSzO5ETNEvXg8DWjL494xf2Nkp+OXrb/pzG+BOud305dW2q9InDEkp5M9kDj1+NQW+XfK9oC/swbxLER9/I8Bu7UdJu7GlYYdi2joQt7s08kAwc1D57F8/s42w2onCYs91Yn0smLMU9//AbJc+PttVtDDag4XRPvhiU9LhoowLsZXV89eTOvb88uLOQ2XfOmz/7W/G+9Na2NDzSmVC0vOx/KqfNB5u6eJ5s0aT/fKRAHrV2tri9/6osPdgKcbtIHnXXi9huH+voTg6F5pJZub+oekhI7GAn+RdcsVga3ojq7ZlgNYaYNPyjHNnMwUMZzSPvVoPR5J3j+mV/DePdnYGnCloa4VWoehCyemDC82tv8iZtseRg3HoWC0lFbywQvgLktMN2yGqm7x+C42zk2lbaBLW5WEdS3CdE15IZbRsFfiBRphMgn1wNiijsz2VRzNO6hIyosmLPRAH0T2Qt7+bfLcxPv50Zi8bbz3J7LVzDiCnI5uF3hV+10CwLihmGH/bYbrU2kWX2urYrFbrZL2R8aKo/wLjNwOoAAB4nI2OMWrDQBBFn2zZwTikCiHlFgFXEtI6AWNSq0xhZPcGL0IgJFjLt0idk+QYOUCOkQOkyJezRYoU3mWYNzt/Zj9wzRsRw4mYcx94xBWPgccseA0cS/MReCL+CjxlHt1KGcUzvdydpwYeccND4DEvPAeOpXkPPBF/Bp6Kv9nS0lMrGhwHSt0Ctm1f9407lKWKjToVJyn2eJWuOjV7QUF3nh6yl8JhsKRkymvF/7t/e0tyElYKK73lSeu6ti86Xzlj08yszR8PqpZ5skpsZiW8xPNOHc9RqsGj0W+DL3bOH+uuNXmaXbTnB+KDRDgAAAB4nF3Px04DQRRE0SqbYJMxOWdssqfTeMgLkshBRMECJC/5X/4GkKUuJHozVy29M6+RQ+N8f+Hl90P8Px+N2xzyKGECiyijgjVYBKTYxAEOcYRjnOAUZzjHJa5wjRvc4g73eMAjnvCMV7wxxzyb2MwWtrLAItvYzg52sovd7GEvS+xjPwc4yCEOc4SjHOM4JzjJKU5zhrOc4zwXuMgyK1ziMle4yjWuc4NVJjS0dPQMTFljxk1ucZs73OUe9wuX75/1i/p6NUYSw8SwMVwMHyPESGPUYmTFCFZVicqorMqpvCqoUpVkI9lINpKNZCPZSDaSjWRTi2UlW8lWspVsJVvJVrKV7KQ4KU6Kk+I06/5mtZXTy7328/K8PC/FS/GaDZoN2ipICVKCtgp6W5AcJKeaSHVX02ymv2XJD5pYwskAAAAAAAH//wACAAEAAAAMAAAAFgAAAAIAAQADAAMAAQAEAAAAAgAAAAAAAAABAAAAAOSdnl4AAAAA3FkqXwAAAADk2WCh')format("woff");}.ff4{font-family:ff4;line-height:0.979980;font-style:normal;font-weight:normal;visibility:visible;}
|
|
@font-face{font-family:ff5;src:url('data:application/font-woff;base64,d09GRgABAAAAAAfAAA4AAAAADbQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAHpAAAABwAAAAcpdApX0dERUYAAAeEAAAAHgAAAB4AKQAKT1MvMgAAAbgAAABCAAAAVmKZaX5jbWFwAAACIAAAAG4AAAFyB9AY/WN2dCAAAAKQAAAABAAAAAQARAURZ2FzcAAAB3wAAAAIAAAACP//AANnbHlmAAACtAAAAnIAAAK43cdDVWhlYWQAAAFEAAAANgAAADYlOjKpaGhlYQAAAXwAAAAeAAAAJAo4AyxobXR4AAAB/AAAACMAAADKEE4BcWxvY2EAAAKUAAAAHQAAAMQ9ij5kbWF4cAAAAZwAAAAaAAAAIABkAFVuYW1lAAAFKAAAAO0AAAG2YVYLsHBvc3QAAAYYAAABYQAABDZlJomKAAEAAAACXrjoAdDyXw889QAfCAAAAAAA3FkqXwAAAADk2WChADv+VgSYBZ4AAAAIAAIAAAAAAAB4nGNgZGBgnfcvjIGB5SIDELDMYGBkQAUsAFwJA28AAHicY2BkYGBIZFBjYGIAAUYGBNADEQAPVQC6AAB4nGNgZLnIOIGBlYGB1Zh1JgMDoxyEZr7OkMYkxMDAxMDKyQADjAxIICDNNQVIKTBUss77FwbUP49xFUwNAKHrCdsAAHicY7nI4MIABCwXIZghjiGGYQ1DEsM0hnwGa4YhBAA6SwXMAHiczY+9EYAgDEYfiIBWDmDBSK5gYedZ2TiGMzoIBmJjbePL5fcu+QBoUB8xFFbpTO0dk+SeiBVLLOwcOcssMbOVOl9lJZ91IzLUCw6lxRNkqnRgPI+IZCvB8sboUz7hqvKDD1Glyz9+wQ1tygvkAAAARAUReJxjYGDQgcI0hhkMexheMUox2jDGDCUIAF1zI0gAAAB4nE2RbUhTYRTHz3l270YKuqvbQgzzbk5KyeG2q6CbIhhhL9YHlVjZVNScii8kbiVmSl97+yIWtGhkSAXhIJgVFGkYvUCQMQpXrAL7omD0Kt5Tz2ZEPBw4HHj+///5HWBQDcBaxXrQgA6KphFsrrBOgGX7tFZcdIU1jLcwrUmMxcQ4rNPiuiuMiblDkiWrLMnVLJfycII6xPq1m9XCC+CScOT3R6FOGIIUsAKgWWs0mBz2EjdaJVlJQ4s5X3GWyA7FmW8xa3VKBTpyTez+tTHPvoFTaKGYcr31wWvClGdHW32Pu5qf9KEUY2l17Xs9ty8b+tXR4d0Hnt6Zu1e8q0YpW9uW/y7peZh7DnNPA2QDWLlLLkh6cNhBMso5yO1LNUWY8BNq2xcGaYmimPPjF2aqm/DSxba5rp/sWF9bILW0oAB3YDZmYAW9oa/+02Nllegb8A/1A8ItAMHGPTL5Vnz/ZH4jb2Qj38FuEmwU21m7/xDF0LJ1vPNKiEXV7ezGCd/Zk+qI0DTV2P4KkllbeNZerpMKm//jw3ngRmI9WMzAOnyBgK8zEFDPY9byCmbR0soyLWnOzExOziSKQpiObpqlVf5m0b2hPU4Ngp9r62EL5/AvXIakZxw8bmRO+uFdWsS8ovG2hwvRec85bOn2ent6vN7uoBrRpkw1t9Bz+kyf6GUjroYikRAvzqCXMygWg38ZGGXJYCpHY+Km/LiyxMI4QqM19fHv62H6gDlikB7F1ZU9VfGrb5kQxwr+DcrpoDAhNEE6gJiGhajwNJWIMmbKbL58cvCL31NXaKIGdCJ8Q+fx4IX37l6XUMVpRuEPNX7XnQAAeJyNjjFqw0AQRZ9s2cE4pAoh5RYBVxLSOgFjUqtMYWT3Bi9CICRYy7dInZPkGDlAjpEDpMiXs0WKFN5lmDc7f2Y/cM0bEcOJmHMfeMQVj4HHLHgNHEvzEXgi/go8ZR7dShnFM73cnacGHnHDQ+AxLzwHjqV5DzwRfwaeir/Z0tJTKxocB0rdArZtX/eNO5Slio06FScp9niVrjo1e0FBd54espfCYbCkZMprxf+7f3tLchJWCiu95UnrurYvOl85Y9PMrM0fD6qWebJKbGYlvMTzTh3PUarBo9Fvgy92zh/rrjV5ml205wfig0Q4AAAAeJxdzkdPVUEAR/E5DwvYsPeCveN7U++zYUHFAgqoJMYNC5Z+X7+NGpI5C2dzT24y/9+EUdg9f36HH/8+hP/P9u7fUZgJy2ElrIeNsBm2wk9GzLCHvexjP7PMcYCDHOIwR5jnKMc4zglOcorTnOEs5zjPBS5yictcYYGrXOM6N7jJLW5zh7vc4z4PeMgijxgzIZLIFCqNgSmPecJTnvGcJV7wkle8Zpk3vOUdK7znAx/5xCprfOYL62ywyVe+8Z2t2bXtXzurO4vjHpMesUfqkXuUHrVH6zH0mM71wbE1saKVrGwVq1rNGiyNqBE1okbUiBpRI2pEjagRNZJG0kgaSSNpJI2kkTSSRtLIGlkja2SNrJE1skbWyBpZo2gUjaJRNIpG0SgaRaNoFI2qUTWqRtWoGlWjalSN6nJzubnc3GvuNfeae8295puby4PLgyuDK4Mrg3cH7069O538BbreBOcAAAAAAAAB//8AAgABAAAADAAAABYAAAACAAEAAwADAAEABAAAAAIAAAAAAAAAAQAAAADknZ5eAAAAANxZKl8AAAAA5NlgoQ==')format("woff");}.ff5{font-family:ff5;line-height:0.910156;font-style:normal;font-weight:normal;visibility:visible;}
|
|
.m0{transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);-ms-transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);-webkit-transform:matrix(0.250000,0.000000,0.000000,0.250000,0,0);}
|
|
.m1{transform:none;-ms-transform:none;-webkit-transform:none;}
|
|
.v0{vertical-align:0.000000px;}
|
|
.ls0{letter-spacing:0.000000px;}
|
|
.sc_{text-shadow:none;}
|
|
.sc0{text-shadow:-0.015em 0 transparent,0 0.015em transparent,0.015em 0 transparent,0 -0.015em transparent;}
|
|
@media screen and (-webkit-min-device-pixel-ratio:0){
|
|
.sc_{-webkit-text-stroke:0px transparent;}
|
|
.sc0{-webkit-text-stroke:0.015em transparent;text-shadow:none;}
|
|
}
|
|
.ws0{word-spacing:0.000000px;}
|
|
._5{width:16.028896px;}
|
|
._8{width:21.706448px;}
|
|
._3{width:27.382448px;}
|
|
._0{width:38.685936px;}
|
|
._b{width:68.096640px;}
|
|
._1{width:77.429760px;}
|
|
._2{width:116.174880px;}
|
|
._a{width:164.805120px;}
|
|
._9{width:213.312960px;}
|
|
._4{width:229.484160px;}
|
|
._d{width:321.743520px;}
|
|
._7{width:340.000896px;}
|
|
._c{width:343.908960px;}
|
|
._6{width:459.342448px;}
|
|
.fc1{color:rgb(97,92,237);}
|
|
.fc3{color:rgb(136,136,136);}
|
|
.fc2{color:rgb(51,51,51);}
|
|
.fc0{color:rgb(0,0,0);}
|
|
.fs3{font-size:24.208000px;}
|
|
.fs2{font-size:48.000000px;}
|
|
.fs4{font-size:54.000000px;}
|
|
.fs1{font-size:72.000000px;}
|
|
.fs0{font-size:96.000000px;}
|
|
.y0{bottom:0.000000px;}
|
|
.y243{bottom:66.413700px;}
|
|
.y147{bottom:70.088000px;}
|
|
.y1da{bottom:70.761200px;}
|
|
.y171{bottom:70.763600px;}
|
|
.y24{bottom:72.414500px;}
|
|
.y9c{bottom:72.797300px;}
|
|
.y11e{bottom:74.918900px;}
|
|
.y270{bottom:78.413700px;}
|
|
.y242{bottom:83.213700px;}
|
|
.y244{bottom:83.214000px;}
|
|
.ydb{bottom:83.931600px;}
|
|
.y146{bottom:85.700500px;}
|
|
.y60{bottom:86.036850px;}
|
|
.y5d{bottom:86.037250px;}
|
|
.y1d9{bottom:86.373700px;}
|
|
.y170{bottom:86.376100px;}
|
|
.y23{bottom:88.026600px;}
|
|
.y9b{bottom:88.409400px;}
|
|
.y11d{bottom:90.531000px;}
|
|
.y1ff{bottom:90.659400px;}
|
|
.y21e{bottom:91.500000px;}
|
|
.yd7{bottom:91.737000px;}
|
|
.yde{bottom:91.737900px;}
|
|
.y5a{bottom:93.843850px;}
|
|
.y26f{bottom:95.213700px;}
|
|
.y251{bottom:95.214000px;}
|
|
.yd4{bottom:99.542800px;}
|
|
.yda{bottom:99.543700px;}
|
|
.y145{bottom:101.313000px;}
|
|
.y5f{bottom:101.649350px;}
|
|
.y5c{bottom:101.649750px;}
|
|
.y1d8{bottom:101.986200px;}
|
|
.y16f{bottom:101.988600px;}
|
|
.y22{bottom:103.638700px;}
|
|
.y9a{bottom:104.021500px;}
|
|
.y241{bottom:106.014000px;}
|
|
.y11c{bottom:106.143100px;}
|
|
.yd6{bottom:107.349100px;}
|
|
.ydd{bottom:107.350000px;}
|
|
.y21d{bottom:108.300000px;}
|
|
.y59{bottom:109.456350px;}
|
|
.ya2{bottom:110.076000px;}
|
|
.y250{bottom:112.014000px;}
|
|
.ye5{bottom:113.398000px;}
|
|
.yd3{bottom:115.154900px;}
|
|
.yd9{bottom:115.155800px;}
|
|
.y144{bottom:116.925500px;}
|
|
.y1b5{bottom:116.996800px;}
|
|
.y5e{bottom:117.261850px;}
|
|
.y5b{bottom:117.262250px;}
|
|
.y1d7{bottom:117.598700px;}
|
|
.y16e{bottom:117.601100px;}
|
|
.y26e{bottom:118.014000px;}
|
|
.y1fe{bottom:118.271900px;}
|
|
.y21{bottom:119.250800px;}
|
|
.y99{bottom:119.633600px;}
|
|
.y11b{bottom:121.755200px;}
|
|
.y240{bottom:122.814000px;}
|
|
.yd5{bottom:122.961200px;}
|
|
.ydc{bottom:122.962100px;}
|
|
.y21c{bottom:125.100000px;}
|
|
.y2a{bottom:125.301000px;}
|
|
.yd8{bottom:130.767900px;}
|
|
.y143{bottom:132.538000px;}
|
|
.y1b4{bottom:132.608900px;}
|
|
.y1d6{bottom:133.211200px;}
|
|
.y1fd{bottom:133.884000px;}
|
|
.y24f{bottom:134.814000px;}
|
|
.y20{bottom:134.862900px;}
|
|
.y98{bottom:135.245700px;}
|
|
.y11a{bottom:137.367300px;}
|
|
.y16d{bottom:145.213200px;}
|
|
.y23f{bottom:145.614000px;}
|
|
.y58{bottom:145.625150px;}
|
|
.y21b{bottom:147.900000px;}
|
|
.y142{bottom:148.150500px;}
|
|
.y1b3{bottom:148.221000px;}
|
|
.y1d5{bottom:148.823700px;}
|
|
.y1fc{bottom:149.496100px;}
|
|
.y1f{bottom:150.475000px;}
|
|
.y97{bottom:150.857800px;}
|
|
.y24e{bottom:151.614000px;}
|
|
.y72{bottom:151.679000px;}
|
|
.y119{bottom:152.979400px;}
|
|
.y55{bottom:153.431450px;}
|
|
.ya1{bottom:156.913000px;}
|
|
.y26d{bottom:157.614000px;}
|
|
.ycc{bottom:159.128700px;}
|
|
.ycf{bottom:159.129100px;}
|
|
.yd2{bottom:159.129500px;}
|
|
.y16c{bottom:160.825700px;}
|
|
.y57{bottom:161.237650px;}
|
|
.y23e{bottom:162.414000px;}
|
|
.y141{bottom:163.763000px;}
|
|
.y1b2{bottom:163.833100px;}
|
|
.y21a{bottom:164.700000px;}
|
|
.y1fb{bottom:165.108200px;}
|
|
.y1e{bottom:166.087100px;}
|
|
.y96{bottom:166.469900px;}
|
|
.yc9{bottom:166.934200px;}
|
|
.y71{bottom:167.292000px;}
|
|
.y118{bottom:168.591500px;}
|
|
.y54{bottom:169.043950px;}
|
|
.y24d{bottom:174.414000px;}
|
|
.ycb{bottom:174.740800px;}
|
|
.yce{bottom:174.741200px;}
|
|
.yd1{bottom:174.741600px;}
|
|
.y1d4{bottom:176.435800px;}
|
|
.y16b{bottom:176.438200px;}
|
|
.y56{bottom:176.850150px;}
|
|
.y140{bottom:179.375500px;}
|
|
.y1b1{bottom:179.445200px;}
|
|
.y1fa{bottom:180.720300px;}
|
|
.ye4{bottom:180.792000px;}
|
|
.y1d{bottom:181.699200px;}
|
|
.y95{bottom:182.082000px;}
|
|
.yc8{bottom:182.546300px;}
|
|
.y23d{bottom:185.214000px;}
|
|
.y219{bottom:187.500000px;}
|
|
.yca{bottom:190.352900px;}
|
|
.ycd{bottom:190.353300px;}
|
|
.yd0{bottom:190.353700px;}
|
|
.y24c{bottom:191.214000px;}
|
|
.y1d3{bottom:192.048300px;}
|
|
.y16a{bottom:192.050700px;}
|
|
.y13f{bottom:194.988000px;}
|
|
.y117{bottom:196.204000px;}
|
|
.y1f9{bottom:196.332400px;}
|
|
.y26c{bottom:197.214000px;}
|
|
.y23c{bottom:202.014000px;}
|
|
.y218{bottom:204.300000px;}
|
|
.y53{bottom:205.212350px;}
|
|
.y1d2{bottom:207.660800px;}
|
|
.y169{bottom:207.663200px;}
|
|
.y24b{bottom:208.014000px;}
|
|
.y1c{bottom:209.311700px;}
|
|
.y94{bottom:209.694500px;}
|
|
.y13e{bottom:210.600500px;}
|
|
.y70{bottom:211.266000px;}
|
|
.y116{bottom:211.816100px;}
|
|
.y1f8{bottom:211.944900px;}
|
|
.y4f{bottom:213.018550px;}
|
|
.y174{bottom:213.715000px;}
|
|
.y1aa{bottom:213.806900px;}
|
|
.y1ad{bottom:213.807300px;}
|
|
.y1b0{bottom:213.807700px;}
|
|
.y26b{bottom:214.014000px;}
|
|
.y29{bottom:215.362000px;}
|
|
.ya0{bottom:215.750000px;}
|
|
.yc1{bottom:218.713900px;}
|
|
.yc4{bottom:218.714300px;}
|
|
.yc7{bottom:218.714700px;}
|
|
.y6d{bottom:219.072000px;}
|
|
.y52{bottom:220.824850px;}
|
|
.y1d1{bottom:223.273300px;}
|
|
.y168{bottom:223.275700px;}
|
|
.y23b{bottom:224.814000px;}
|
|
.y1b{bottom:224.923800px;}
|
|
.y93{bottom:225.307000px;}
|
|
.y6f{bottom:226.879000px;}
|
|
.y217{bottom:227.100000px;}
|
|
.y115{bottom:227.428200px;}
|
|
.y1f7{bottom:227.557000px;}
|
|
.y4d{bottom:228.631050px;}
|
|
.y1a9{bottom:229.419000px;}
|
|
.y1ac{bottom:229.419400px;}
|
|
.y1af{bottom:229.419800px;}
|
|
.y24a{bottom:230.814000px;}
|
|
.ybf{bottom:234.326000px;}
|
|
.yc3{bottom:234.326400px;}
|
|
.yc6{bottom:234.326800px;}
|
|
.y6c{bottom:234.685000px;}
|
|
.y1ba{bottom:235.466000px;}
|
|
.y51{bottom:236.436950px;}
|
|
.y26a{bottom:236.814000px;}
|
|
.y13d{bottom:238.212600px;}
|
|
.y1d0{bottom:238.885800px;}
|
|
.y167{bottom:238.888200px;}
|
|
.ye3{bottom:240.379000px;}
|
|
.y1a{bottom:240.535900px;}
|
|
.y92{bottom:240.919500px;}
|
|
.y23a{bottom:241.614000px;}
|
|
.y6e{bottom:242.491000px;}
|
|
.y114{bottom:243.040300px;}
|
|
.y1f6{bottom:243.169100px;}
|
|
.y216{bottom:243.900000px;}
|
|
.y4e{bottom:244.243550px;}
|
|
.y148{bottom:244.266000px;}
|
|
.y1a8{bottom:245.031100px;}
|
|
.y1ab{bottom:245.031500px;}
|
|
.y1ae{bottom:245.031900px;}
|
|
.y9f{bottom:246.975000px;}
|
|
.y249{bottom:247.614000px;}
|
|
.yc0{bottom:249.938100px;}
|
|
.yc2{bottom:249.938500px;}
|
|
.yc5{bottom:249.938900px;}
|
|
.y6b{bottom:250.297000px;}
|
|
.y50{bottom:252.049450px;}
|
|
.y269{bottom:253.614000px;}
|
|
.y13c{bottom:253.825100px;}
|
|
.y1cf{bottom:254.498300px;}
|
|
.y166{bottom:254.500700px;}
|
|
.y19{bottom:256.148000px;}
|
|
.y91{bottom:256.532000px;}
|
|
.y113{bottom:258.652400px;}
|
|
.y1f5{bottom:258.781200px;}
|
|
.y28{bottom:262.199000px;}
|
|
.y239{bottom:264.414000px;}
|
|
.y215{bottom:266.700000px;}
|
|
.y13b{bottom:269.437600px;}
|
|
.y1ce{bottom:270.110800px;}
|
|
.y18{bottom:271.760100px;}
|
|
.y90{bottom:272.144500px;}
|
|
.y1a3{bottom:273.392400px;}
|
|
.y1a7{bottom:273.393200px;}
|
|
.y112{bottom:274.264500px;}
|
|
.y1f4{bottom:274.393700px;}
|
|
.y268{bottom:276.414000px;}
|
|
.ybd{bottom:278.300900px;}
|
|
.y4c{bottom:280.411950px;}
|
|
.y238{bottom:281.214000px;}
|
|
.y165{bottom:282.112800px;}
|
|
.y214{bottom:283.500000px;}
|
|
.y13a{bottom:285.050100px;}
|
|
.y1cd{bottom:285.723300px;}
|
|
.ybe{bottom:286.106760px;}
|
|
.y6a{bottom:286.466000px;}
|
|
.y17{bottom:287.372200px;}
|
|
.y8f{bottom:287.757000px;}
|
|
.y19f{bottom:289.004100px;}
|
|
.y1a2{bottom:289.004500px;}
|
|
.y1a6{bottom:289.005300px;}
|
|
.y111{bottom:289.876600px;}
|
|
.y1f3{bottom:290.005800px;}
|
|
.y267{bottom:293.214000px;}
|
|
.y9e{bottom:293.811000px;}
|
|
.ybc{bottom:293.913000px;}
|
|
.y4b{bottom:296.024450px;}
|
|
.y49{bottom:296.024850px;}
|
|
.y164{bottom:297.725300px;}
|
|
.y139{bottom:300.662200px;}
|
|
.y69{bottom:302.078000px;}
|
|
.y1b9{bottom:302.859000px;}
|
|
.y16{bottom:302.984300px;}
|
|
.y8e{bottom:303.369500px;}
|
|
.y237{bottom:304.014000px;}
|
|
.y19e{bottom:304.616200px;}
|
|
.y1a1{bottom:304.616600px;}
|
|
.y1a5{bottom:304.617400px;}
|
|
.y110{bottom:305.488700px;}
|
|
.y4a{bottom:311.636950px;}
|
|
.y213{bottom:312.179000px;}
|
|
.y1cc{bottom:313.335400px;}
|
|
.y163{bottom:313.337800px;}
|
|
.y266{bottom:316.014000px;}
|
|
.y138{bottom:316.274700px;}
|
|
.y1f2{bottom:317.617900px;}
|
|
.y15{bottom:318.596400px;}
|
|
.y8d{bottom:318.982000px;}
|
|
.y173{bottom:319.389000px;}
|
|
.y1a0{bottom:320.228700px;}
|
|
.y1a4{bottom:320.229500px;}
|
|
.y236{bottom:320.814000px;}
|
|
.y27{bottom:324.648000px;}
|
|
.y9d{bottom:325.036000px;}
|
|
.ybb{bottom:328.275100px;}
|
|
.y1cb{bottom:328.947900px;}
|
|
.y162{bottom:328.950300px;}
|
|
.y137{bottom:331.887200px;}
|
|
.y265{bottom:332.814000px;}
|
|
.y14{bottom:334.208500px;}
|
|
.y8c{bottom:334.594500px;}
|
|
.y172{bottom:335.002000px;}
|
|
.y10f{bottom:337.930900px;}
|
|
.y48{bottom:339.999450px;}
|
|
.y235{bottom:343.614000px;}
|
|
.yba{bottom:343.887600px;}
|
|
.y1ca{bottom:344.560400px;}
|
|
.y161{bottom:344.562800px;}
|
|
.y1f1{bottom:345.230000px;}
|
|
.y68{bottom:346.052000px;}
|
|
.y136{bottom:347.499700px;}
|
|
.y45{bottom:347.805750px;}
|
|
.y19a{bottom:348.590400px;}
|
|
.y19d{bottom:348.590800px;}
|
|
.y13{bottom:349.820600px;}
|
|
.y8b{bottom:350.207000px;}
|
|
.y67{bottom:353.859000px;}
|
|
.y47{bottom:355.611950px;}
|
|
.y43{bottom:355.612000px;}
|
|
.y264{bottom:355.614000px;}
|
|
.y26{bottom:355.873000px;}
|
|
.y197{bottom:356.396200px;}
|
|
.yb9{bottom:359.500100px;}
|
|
.y1c9{bottom:360.172900px;}
|
|
.y160{bottom:360.175300px;}
|
|
.y234{bottom:360.414000px;}
|
|
.y1f0{bottom:360.842500px;}
|
|
.y10e{bottom:361.348500px;}
|
|
.y135{bottom:363.112200px;}
|
|
.y44{bottom:363.418250px;}
|
|
.y199{bottom:364.202500px;}
|
|
.y19c{bottom:364.202900px;}
|
|
.y12{bottom:365.432700px;}
|
|
.y8a{bottom:365.819500px;}
|
|
.y1b8{bottom:370.252000px;}
|
|
.y46{bottom:371.224450px;}
|
|
.y196{bottom:372.008300px;}
|
|
.y263{bottom:372.414000px;}
|
|
.yb8{bottom:375.112600px;}
|
|
.y1c8{bottom:375.785400px;}
|
|
.y15f{bottom:375.787800px;}
|
|
.y1ef{bottom:376.455000px;}
|
|
.y134{bottom:378.724700px;}
|
|
.y212{bottom:378.725100px;}
|
|
.y198{bottom:379.814600px;}
|
|
.y19b{bottom:379.815000px;}
|
|
.y11{bottom:381.044800px;}
|
|
.y233{bottom:383.214000px;}
|
|
.y25{bottom:387.098000px;}
|
|
.y262{bottom:389.214000px;}
|
|
.yb7{bottom:390.725100px;}
|
|
.y1c7{bottom:391.397900px;}
|
|
.y15e{bottom:391.400300px;}
|
|
.y1ee{bottom:392.067500px;}
|
|
.y89{bottom:393.431600px;}
|
|
.y211{bottom:394.337200px;}
|
|
.y10{bottom:396.656900px;}
|
|
.ye2{bottom:396.777000px;}
|
|
.y10d{bottom:397.816500px;}
|
|
.y42{bottom:399.586750px;}
|
|
.y232{bottom:400.014000px;}
|
|
.y133{bottom:406.336800px;}
|
|
.yb6{bottom:406.337600px;}
|
|
.y1c6{bottom:407.010400px;}
|
|
.y15d{bottom:407.012800px;}
|
|
.y40{bottom:407.393000px;}
|
|
.y1ed{bottom:407.680000px;}
|
|
.y191{bottom:408.176700px;}
|
|
.y195{bottom:408.177100px;}
|
|
.y88{bottom:409.043700px;}
|
|
.y210{bottom:409.949300px;}
|
|
.y261{bottom:412.014000px;}
|
|
.yf{bottom:412.269000px;}
|
|
.y10c{bottom:413.428600px;}
|
|
.y41{bottom:415.199250px;}
|
|
.y18d{bottom:415.982100px;}
|
|
.y132{bottom:421.949300px;}
|
|
.yb5{bottom:421.950100px;}
|
|
.y1c5{bottom:422.622900px;}
|
|
.y15c{bottom:422.625300px;}
|
|
.y231{bottom:422.814000px;}
|
|
.y1ec{bottom:423.292500px;}
|
|
.y190{bottom:423.788800px;}
|
|
.y194{bottom:423.789200px;}
|
|
.y87{bottom:424.655800px;}
|
|
.y20f{bottom:425.561400px;}
|
|
.ye{bottom:427.881100px;}
|
|
.y260{bottom:428.814000px;}
|
|
.y10b{bottom:429.040700px;}
|
|
.y18c{bottom:431.594200px;}
|
|
.y131{bottom:437.561800px;}
|
|
.yb4{bottom:437.562600px;}
|
|
.y1b7{bottom:437.645000px;}
|
|
.y1c4{bottom:438.235400px;}
|
|
.y15b{bottom:438.237800px;}
|
|
.y1eb{bottom:438.905000px;}
|
|
.y18f{bottom:439.400900px;}
|
|
.y193{bottom:439.401300px;}
|
|
.y230{bottom:439.614000px;}
|
|
.y86{bottom:440.267900px;}
|
|
.y20e{bottom:441.173500px;}
|
|
.yd{bottom:443.493200px;}
|
|
.y10a{bottom:444.652800px;}
|
|
.y18b{bottom:447.206300px;}
|
|
.y3f{bottom:449.558200px;}
|
|
.y25f{bottom:451.614000px;}
|
|
.y130{bottom:453.174300px;}
|
|
.yb3{bottom:453.175100px;}
|
|
.y1c3{bottom:453.847900px;}
|
|
.y15a{bottom:453.850300px;}
|
|
.y1ea{bottom:454.517500px;}
|
|
.y18e{bottom:455.013000px;}
|
|
.y192{bottom:455.013400px;}
|
|
.y85{bottom:455.880000px;}
|
|
.y20d{bottom:456.785600px;}
|
|
.y109{bottom:460.264900px;}
|
|
.y22f{bottom:462.414000px;}
|
|
.y3e{bottom:465.170700px;}
|
|
.y25e{bottom:468.414000px;}
|
|
.yb2{bottom:468.787600px;}
|
|
.y1e9{bottom:470.130000px;}
|
|
.yc{bottom:471.105700px;}
|
|
.y84{bottom:471.492500px;}
|
|
.ye1{bottom:474.839000px;}
|
|
.y108{bottom:475.877000px;}
|
|
.y22e{bottom:479.214000px;}
|
|
.y3d{bottom:480.783200px;}
|
|
.y12f{bottom:480.786400px;}
|
|
.y1c2{bottom:481.460000px;}
|
|
.y159{bottom:481.462400px;}
|
|
.y187{bottom:483.374700px;}
|
|
.y18a{bottom:483.375100px;}
|
|
.y20c{bottom:484.398100px;}
|
|
.yb1{bottom:484.400100px;}
|
|
.y1e8{bottom:485.742500px;}
|
|
.yb{bottom:486.718200px;}
|
|
.y66{bottom:486.839000px;}
|
|
.y25d{bottom:491.214000px;}
|
|
.y107{bottom:491.489100px;}
|
|
.y3c{bottom:496.395700px;}
|
|
.y12e{bottom:496.398900px;}
|
|
.y1c1{bottom:497.072500px;}
|
|
.y158{bottom:497.074500px;}
|
|
.y184{bottom:498.986400px;}
|
|
.y186{bottom:498.986800px;}
|
|
.y189{bottom:498.987200px;}
|
|
.y20b{bottom:500.010600px;}
|
|
.yb0{bottom:500.012600px;}
|
|
.y1e7{bottom:501.354600px;}
|
|
.y22d{bottom:502.014000px;}
|
|
.ya{bottom:502.330700px;}
|
|
.y83{bottom:503.934300px;}
|
|
.y1b6{bottom:505.038000px;}
|
|
.y25c{bottom:508.014000px;}
|
|
.y3b{bottom:512.008200px;}
|
|
.y12d{bottom:512.011000px;}
|
|
.y1c0{bottom:512.685000px;}
|
|
.y157{bottom:512.686600px;}
|
|
.y185{bottom:514.598900px;}
|
|
.y188{bottom:514.599300px;}
|
|
.y20a{bottom:515.623100px;}
|
|
.yaf{bottom:515.625100px;}
|
|
.y1e6{bottom:516.967100px;}
|
|
.y9{bottom:517.943200px;}
|
|
.y22c{bottom:518.814000px;}
|
|
.y103{bottom:525.851200px;}
|
|
.y106{bottom:525.851600px;}
|
|
.y82{bottom:527.351900px;}
|
|
.y3a{bottom:527.620700px;}
|
|
.y12c{bottom:527.623500px;}
|
|
.y1bf{bottom:528.297500px;}
|
|
.y156{bottom:528.298700px;}
|
|
.y25b{bottom:530.814000px;}
|
|
.y209{bottom:531.235600px;}
|
|
.y8{bottom:533.555700px;}
|
|
.y100{bottom:533.656700px;}
|
|
.y65{bottom:533.675000px;}
|
|
.y22b{bottom:535.614000px;}
|
|
.y102{bottom:541.463300px;}
|
|
.y105{bottom:541.463700px;}
|
|
.y248{bottom:541.614000px;}
|
|
.y17d{bottom:542.960200px;}
|
|
.y181{bottom:542.961000px;}
|
|
.y39{bottom:543.233200px;}
|
|
.y12b{bottom:543.235600px;}
|
|
.yae{bottom:543.237200px;}
|
|
.y1be{bottom:543.910000px;}
|
|
.y155{bottom:543.910800px;}
|
|
.y1e5{bottom:544.579600px;}
|
|
.y208{bottom:546.848100px;}
|
|
.y121{bottom:547.513000px;}
|
|
.y25a{bottom:547.614000px;}
|
|
.y7{bottom:549.168200px;}
|
|
.yff{bottom:549.268800px;}
|
|
.y101{bottom:557.075400px;}
|
|
.y104{bottom:557.075800px;}
|
|
.y22a{bottom:558.414000px;}
|
|
.y179{bottom:558.571900px;}
|
|
.y17c{bottom:558.572300px;}
|
|
.y180{bottom:558.573100px;}
|
|
.y183{bottom:558.573500px;}
|
|
.y38{bottom:558.845700px;}
|
|
.y12a{bottom:558.848100px;}
|
|
.yad{bottom:558.849300px;}
|
|
.y1bd{bottom:559.522500px;}
|
|
.y154{bottom:559.522900px;}
|
|
.y207{bottom:562.460600px;}
|
|
.y81{bottom:563.820300px;}
|
|
.y259{bottom:564.414000px;}
|
|
.y6{bottom:564.780700px;}
|
|
.y1db{bottom:565.574000px;}
|
|
.y1e4{bottom:572.192100px;}
|
|
.y178{bottom:574.184000px;}
|
|
.y17b{bottom:574.184400px;}
|
|
.y17f{bottom:574.185200px;}
|
|
.y182{bottom:574.185600px;}
|
|
.y37{bottom:574.458200px;}
|
|
.y129{bottom:574.460200px;}
|
|
.yac{bottom:574.461400px;}
|
|
.y153{bottom:575.135000px;}
|
|
.y229{bottom:575.214000px;}
|
|
.y206{bottom:578.073100px;}
|
|
.y80{bottom:579.432800px;}
|
|
.y64{bottom:580.513000px;}
|
|
.y247{bottom:581.214000px;}
|
|
.yfe{bottom:585.437200px;}
|
|
.y258{bottom:587.214000px;}
|
|
.y1e3{bottom:587.804600px;}
|
|
.y17a{bottom:589.796500px;}
|
|
.y17e{bottom:589.797300px;}
|
|
.y36{bottom:590.070700px;}
|
|
.y128{bottom:590.072700px;}
|
|
.yab{bottom:590.073500px;}
|
|
.y152{bottom:590.747100px;}
|
|
.y1bc{bottom:590.747500px;}
|
|
.y205{bottom:593.685200px;}
|
|
.y7f{bottom:595.045300px;}
|
|
.ye0{bottom:596.125000px;}
|
|
.y5{bottom:597.222500px;}
|
|
.y228{bottom:598.014000px;}
|
|
.yf6{bottom:601.048500px;}
|
|
.yf9{bottom:601.048900px;}
|
|
.yfd{bottom:601.049300px;}
|
|
.y1e2{bottom:603.417100px;}
|
|
.y257{bottom:604.014000px;}
|
|
.y35{bottom:605.683200px;}
|
|
.y127{bottom:605.684800px;}
|
|
.yaa{bottom:605.685600px;}
|
|
.y151{bottom:606.359200px;}
|
|
.yf3{bottom:608.854000px;}
|
|
.y7e{bottom:610.657800px;}
|
|
.y227{bottom:614.814000px;}
|
|
.yf5{bottom:616.660600px;}
|
|
.yf8{bottom:616.661000px;}
|
|
.yfc{bottom:616.661400px;}
|
|
.y176{bottom:618.158500px;}
|
|
.y1bb{bottom:618.359600px;}
|
|
.y1e1{bottom:619.029600px;}
|
|
.y4{bottom:620.640500px;}
|
|
.y246{bottom:620.814000px;}
|
|
.y34{bottom:621.295700px;}
|
|
.y126{bottom:621.297300px;}
|
|
.ya9{bottom:621.297700px;}
|
|
.y120{bottom:622.712000px;}
|
|
.yf2{bottom:624.466100px;}
|
|
.y177{bottom:625.964750px;}
|
|
.y7d{bottom:626.270300px;}
|
|
.y256{bottom:626.814000px;}
|
|
.y63{bottom:627.349000px;}
|
|
.yf4{bottom:632.272700px;}
|
|
.yf7{bottom:632.273100px;}
|
|
.yfb{bottom:632.273500px;}
|
|
.y175{bottom:633.771000px;}
|
|
.y150{bottom:633.971700px;}
|
|
.y1e0{bottom:634.642100px;}
|
|
.y33{bottom:636.908200px;}
|
|
.y125{bottom:636.909400px;}
|
|
.ya8{bottom:636.909800px;}
|
|
.y226{bottom:637.614000px;}
|
|
.y255{bottom:643.614000px;}
|
|
.yfa{bottom:647.885600px;}
|
|
.y204{bottom:648.909400px;}
|
|
.y14f{bottom:649.583800px;}
|
|
.y1df{bottom:650.254600px;}
|
|
.y32{bottom:652.520700px;}
|
|
.ya7{bottom:652.521900px;}
|
|
.y225{bottom:654.414000px;}
|
|
.y245{bottom:660.414000px;}
|
|
.y7c{bottom:660.632400px;}
|
|
.y3{bottom:662.028400px;}
|
|
.y203{bottom:664.521500px;}
|
|
.y14e{bottom:665.195900px;}
|
|
.y1de{bottom:665.867100px;}
|
|
.y31{bottom:668.133200px;}
|
|
.ya6{bottom:668.134000px;}
|
|
.y62{bottom:674.186000px;}
|
|
.y7b{bottom:676.244900px;}
|
|
.yeb{bottom:676.246100px;}
|
|
.y224{bottom:677.214000px;}
|
|
.y202{bottom:680.133600px;}
|
|
.y124{bottom:680.134000px;}
|
|
.y14d{bottom:680.808000px;}
|
|
.y254{bottom:683.214000px;}
|
|
.y30{bottom:683.745700px;}
|
|
.y77{bottom:684.051500px;}
|
|
.yee{bottom:684.052400px;}
|
|
.yf1{bottom:684.052800px;}
|
|
.y7a{bottom:691.857400px;}
|
|
.yea{bottom:691.858200px;}
|
|
.y2{bottom:693.252200px;}
|
|
.y223{bottom:694.014000px;}
|
|
.y123{bottom:695.746100px;}
|
|
.ya5{bottom:695.746500px;}
|
|
.y14c{bottom:696.420100px;}
|
|
.y1dd{bottom:698.308900px;}
|
|
.y2f{bottom:699.358200px;}
|
|
.y76{bottom:699.664000px;}
|
|
.yed{bottom:699.664500px;}
|
|
.yf0{bottom:699.664900px;}
|
|
.y253{bottom:700.014000px;}
|
|
.y11f{bottom:705.717000px;}
|
|
.y79{bottom:707.469900px;}
|
|
.ye9{bottom:707.470300px;}
|
|
.y122{bottom:711.358200px;}
|
|
.ya4{bottom:711.358600px;}
|
|
.y14b{bottom:712.032200px;}
|
|
.y2e{bottom:714.970700px;}
|
|
.yec{bottom:715.276600px;}
|
|
.yef{bottom:715.277000px;}
|
|
.y222{bottom:716.814000px;}
|
|
.y1dc{bottom:721.726500px;}
|
|
.y78{bottom:723.082400px;}
|
|
.y1{bottom:724.476000px;}
|
|
.y201{bottom:726.970300px;}
|
|
.ya3{bottom:726.970700px;}
|
|
.y221{bottom:733.614000px;}
|
|
.y252{bottom:739.614000px;}
|
|
.y200{bottom:742.582400px;}
|
|
.y2d{bottom:742.582800px;}
|
|
.y14a{bottom:744.474000px;}
|
|
.ye7{bottom:751.444900px;}
|
|
.y75{bottom:751.445150px;}
|
|
.y220{bottom:756.414000px;}
|
|
.y2c{bottom:758.194900px;}
|
|
.ye8{bottom:759.250760px;}
|
|
.y73{bottom:759.251000px;}
|
|
.ydf{bottom:764.248000px;}
|
|
.ye6{bottom:767.057000px;}
|
|
.y74{bottom:767.057250px;}
|
|
.y149{bottom:767.892000px;}
|
|
.y21f{bottom:773.214000px;}
|
|
.y2b{bottom:773.807000px;}
|
|
.y61{bottom:779.860000px;}
|
|
.h5{height:16.848768px;}
|
|
.h4{height:33.408000px;}
|
|
.h7{height:33.703125px;}
|
|
.h6{height:36.726562px;}
|
|
.h8{height:37.584000px;}
|
|
.h3{height:50.112000px;}
|
|
.h2{height:66.816000px;}
|
|
.h0{height:841.890000px;}
|
|
.h1{height:842.000000px;}
|
|
.w0{width:595.280000px;}
|
|
.w1{width:595.500000px;}
|
|
.x0{left:0.000000px;}
|
|
.x3a{left:60.366780px;}
|
|
.x1{left:62.250000px;}
|
|
.x7{left:64.253900px;}
|
|
.x39{left:65.994900px;}
|
|
.x9{left:69.000000px;}
|
|
.x2{left:71.933980px;}
|
|
.x38{left:77.250000px;}
|
|
.x36{left:135.371000px;}
|
|
.x6{left:152.268000px;}
|
|
.x24{left:158.033600px;}
|
|
.xb{left:161.386700px;}
|
|
.x2a{left:168.367000px;}
|
|
.x31{left:169.598000px;}
|
|
.x28{left:184.508000px;}
|
|
.x4{left:193.029000px;}
|
|
.x15{left:200.063000px;}
|
|
.x18{left:210.549000px;}
|
|
.x1f{left:212.715000px;}
|
|
.x3{left:222.788000px;}
|
|
.x1d{left:224.061000px;}
|
|
.x22{left:226.983000px;}
|
|
.x8{left:233.366000px;}
|
|
.x27{left:240.455000px;}
|
|
.x30{left:242.007000px;}
|
|
.x19{left:246.425000px;}
|
|
.x16{left:258.266000px;}
|
|
.x11{left:274.343000px;}
|
|
.x25{left:277.001600px;}
|
|
.x12{left:278.061000px;}
|
|
.x17{left:302.558000px;}
|
|
.x37{left:306.287000px;}
|
|
.x32{left:310.571000px;}
|
|
.x2b{left:331.336000px;}
|
|
.x13{left:351.957000px;}
|
|
.xd{left:353.779000px;}
|
|
.x10{left:365.714000px;}
|
|
.xe{left:366.843000px;}
|
|
.xa{left:377.383000px;}
|
|
.x1a{left:379.387000px;}
|
|
.xf{left:380.807000px;}
|
|
.xc{left:387.066380px;}
|
|
.x20{left:390.254000px;}
|
|
.x2f{left:394.213000px;}
|
|
.x26{left:395.482600px;}
|
|
.x1c{left:416.008000px;}
|
|
.x1e{left:419.389000px;}
|
|
.x2e{left:421.684000px;}
|
|
.x21{left:435.905000px;}
|
|
.x5{left:461.903000px;}
|
|
.x1b{left:466.631000px;}
|
|
.x33{left:468.382000px;}
|
|
.x34{left:470.386000px;}
|
|
.x35{left:471.805000px;}
|
|
.x2c{left:485.142000px;}
|
|
.x29{left:499.813000px;}
|
|
.x2d{left:502.984000px;}
|
|
.x14{left:513.484000px;}
|
|
.x23{left:518.273000px;}
|
|
@media print{
|
|
.v0{vertical-align:0.000000pt;}
|
|
.ls0{letter-spacing:0.000000pt;}
|
|
.ws0{word-spacing:0.000000pt;}
|
|
._5{width:21.371861pt;}
|
|
._8{width:28.941931pt;}
|
|
._3{width:36.509931pt;}
|
|
._0{width:51.581248pt;}
|
|
._b{width:90.795520pt;}
|
|
._1{width:103.239680pt;}
|
|
._2{width:154.899840pt;}
|
|
._a{width:219.740160pt;}
|
|
._9{width:284.417280pt;}
|
|
._4{width:305.978880pt;}
|
|
._d{width:428.991360pt;}
|
|
._7{width:453.334528pt;}
|
|
._c{width:458.545280pt;}
|
|
._6{width:612.456597pt;}
|
|
.fs3{font-size:32.277333pt;}
|
|
.fs2{font-size:64.000000pt;}
|
|
.fs4{font-size:72.000000pt;}
|
|
.fs1{font-size:96.000000pt;}
|
|
.fs0{font-size:128.000000pt;}
|
|
.y0{bottom:0.000000pt;}
|
|
.y243{bottom:88.551600pt;}
|
|
.y147{bottom:93.450667pt;}
|
|
.y1da{bottom:94.348267pt;}
|
|
.y171{bottom:94.351467pt;}
|
|
.y24{bottom:96.552667pt;}
|
|
.y9c{bottom:97.063067pt;}
|
|
.y11e{bottom:99.891867pt;}
|
|
.y270{bottom:104.551600pt;}
|
|
.y242{bottom:110.951600pt;}
|
|
.y244{bottom:110.952000pt;}
|
|
.ydb{bottom:111.908800pt;}
|
|
.y146{bottom:114.267333pt;}
|
|
.y60{bottom:114.715800pt;}
|
|
.y5d{bottom:114.716333pt;}
|
|
.y1d9{bottom:115.164933pt;}
|
|
.y170{bottom:115.168133pt;}
|
|
.y23{bottom:117.368800pt;}
|
|
.y9b{bottom:117.879200pt;}
|
|
.y11d{bottom:120.708000pt;}
|
|
.y1ff{bottom:120.879200pt;}
|
|
.y21e{bottom:122.000000pt;}
|
|
.yd7{bottom:122.316000pt;}
|
|
.yde{bottom:122.317200pt;}
|
|
.y5a{bottom:125.125133pt;}
|
|
.y26f{bottom:126.951600pt;}
|
|
.y251{bottom:126.952000pt;}
|
|
.yd4{bottom:132.723733pt;}
|
|
.yda{bottom:132.724933pt;}
|
|
.y145{bottom:135.084000pt;}
|
|
.y5f{bottom:135.532467pt;}
|
|
.y5c{bottom:135.533000pt;}
|
|
.y1d8{bottom:135.981600pt;}
|
|
.y16f{bottom:135.984800pt;}
|
|
.y22{bottom:138.184933pt;}
|
|
.y9a{bottom:138.695333pt;}
|
|
.y241{bottom:141.352000pt;}
|
|
.y11c{bottom:141.524133pt;}
|
|
.yd6{bottom:143.132133pt;}
|
|
.ydd{bottom:143.133333pt;}
|
|
.y21d{bottom:144.400000pt;}
|
|
.y59{bottom:145.941800pt;}
|
|
.ya2{bottom:146.768000pt;}
|
|
.y250{bottom:149.352000pt;}
|
|
.ye5{bottom:151.197333pt;}
|
|
.yd3{bottom:153.539867pt;}
|
|
.yd9{bottom:153.541067pt;}
|
|
.y144{bottom:155.900667pt;}
|
|
.y1b5{bottom:155.995733pt;}
|
|
.y5e{bottom:156.349133pt;}
|
|
.y5b{bottom:156.349667pt;}
|
|
.y1d7{bottom:156.798267pt;}
|
|
.y16e{bottom:156.801467pt;}
|
|
.y26e{bottom:157.352000pt;}
|
|
.y1fe{bottom:157.695867pt;}
|
|
.y21{bottom:159.001067pt;}
|
|
.y99{bottom:159.511467pt;}
|
|
.y11b{bottom:162.340267pt;}
|
|
.y240{bottom:163.752000pt;}
|
|
.yd5{bottom:163.948267pt;}
|
|
.ydc{bottom:163.949467pt;}
|
|
.y21c{bottom:166.800000pt;}
|
|
.y2a{bottom:167.068000pt;}
|
|
.yd8{bottom:174.357200pt;}
|
|
.y143{bottom:176.717333pt;}
|
|
.y1b4{bottom:176.811867pt;}
|
|
.y1d6{bottom:177.614933pt;}
|
|
.y1fd{bottom:178.512000pt;}
|
|
.y24f{bottom:179.752000pt;}
|
|
.y20{bottom:179.817200pt;}
|
|
.y98{bottom:180.327600pt;}
|
|
.y11a{bottom:183.156400pt;}
|
|
.y16d{bottom:193.617600pt;}
|
|
.y23f{bottom:194.152000pt;}
|
|
.y58{bottom:194.166867pt;}
|
|
.y21b{bottom:197.200000pt;}
|
|
.y142{bottom:197.534000pt;}
|
|
.y1b3{bottom:197.628000pt;}
|
|
.y1d5{bottom:198.431600pt;}
|
|
.y1fc{bottom:199.328133pt;}
|
|
.y1f{bottom:200.633333pt;}
|
|
.y97{bottom:201.143733pt;}
|
|
.y24e{bottom:202.152000pt;}
|
|
.y72{bottom:202.238667pt;}
|
|
.y119{bottom:203.972533pt;}
|
|
.y55{bottom:204.575267pt;}
|
|
.ya1{bottom:209.217333pt;}
|
|
.y26d{bottom:210.152000pt;}
|
|
.ycc{bottom:212.171600pt;}
|
|
.ycf{bottom:212.172133pt;}
|
|
.yd2{bottom:212.172667pt;}
|
|
.y16c{bottom:214.434267pt;}
|
|
.y57{bottom:214.983533pt;}
|
|
.y23e{bottom:216.552000pt;}
|
|
.y141{bottom:218.350667pt;}
|
|
.y1b2{bottom:218.444133pt;}
|
|
.y21a{bottom:219.600000pt;}
|
|
.y1fb{bottom:220.144267pt;}
|
|
.y1e{bottom:221.449467pt;}
|
|
.y96{bottom:221.959867pt;}
|
|
.yc9{bottom:222.578933pt;}
|
|
.y71{bottom:223.056000pt;}
|
|
.y118{bottom:224.788667pt;}
|
|
.y54{bottom:225.391933pt;}
|
|
.y24d{bottom:232.552000pt;}
|
|
.ycb{bottom:232.987733pt;}
|
|
.yce{bottom:232.988267pt;}
|
|
.yd1{bottom:232.988800pt;}
|
|
.y1d4{bottom:235.247733pt;}
|
|
.y16b{bottom:235.250933pt;}
|
|
.y56{bottom:235.800200pt;}
|
|
.y140{bottom:239.167333pt;}
|
|
.y1b1{bottom:239.260267pt;}
|
|
.y1fa{bottom:240.960400pt;}
|
|
.ye4{bottom:241.056000pt;}
|
|
.y1d{bottom:242.265600pt;}
|
|
.y95{bottom:242.776000pt;}
|
|
.yc8{bottom:243.395067pt;}
|
|
.y23d{bottom:246.952000pt;}
|
|
.y219{bottom:250.000000pt;}
|
|
.yca{bottom:253.803867pt;}
|
|
.ycd{bottom:253.804400pt;}
|
|
.yd0{bottom:253.804933pt;}
|
|
.y24c{bottom:254.952000pt;}
|
|
.y1d3{bottom:256.064400pt;}
|
|
.y16a{bottom:256.067600pt;}
|
|
.y13f{bottom:259.984000pt;}
|
|
.y117{bottom:261.605333pt;}
|
|
.y1f9{bottom:261.776533pt;}
|
|
.y26c{bottom:262.952000pt;}
|
|
.y23c{bottom:269.352000pt;}
|
|
.y218{bottom:272.400000pt;}
|
|
.y53{bottom:273.616467pt;}
|
|
.y1d2{bottom:276.881067pt;}
|
|
.y169{bottom:276.884267pt;}
|
|
.y24b{bottom:277.352000pt;}
|
|
.y1c{bottom:279.082267pt;}
|
|
.y94{bottom:279.592667pt;}
|
|
.y13e{bottom:280.800667pt;}
|
|
.y70{bottom:281.688000pt;}
|
|
.y116{bottom:282.421467pt;}
|
|
.y1f8{bottom:282.593200pt;}
|
|
.y4f{bottom:284.024733pt;}
|
|
.y174{bottom:284.953333pt;}
|
|
.y1aa{bottom:285.075867pt;}
|
|
.y1ad{bottom:285.076400pt;}
|
|
.y1b0{bottom:285.076933pt;}
|
|
.y26b{bottom:285.352000pt;}
|
|
.y29{bottom:287.149333pt;}
|
|
.ya0{bottom:287.666667pt;}
|
|
.yc1{bottom:291.618533pt;}
|
|
.yc4{bottom:291.619067pt;}
|
|
.yc7{bottom:291.619600pt;}
|
|
.y6d{bottom:292.096000pt;}
|
|
.y52{bottom:294.433133pt;}
|
|
.y1d1{bottom:297.697733pt;}
|
|
.y168{bottom:297.700933pt;}
|
|
.y23b{bottom:299.752000pt;}
|
|
.y1b{bottom:299.898400pt;}
|
|
.y93{bottom:300.409333pt;}
|
|
.y6f{bottom:302.505333pt;}
|
|
.y217{bottom:302.800000pt;}
|
|
.y115{bottom:303.237600pt;}
|
|
.y1f7{bottom:303.409333pt;}
|
|
.y4d{bottom:304.841400pt;}
|
|
.y1a9{bottom:305.892000pt;}
|
|
.y1ac{bottom:305.892533pt;}
|
|
.y1af{bottom:305.893067pt;}
|
|
.y24a{bottom:307.752000pt;}
|
|
.ybf{bottom:312.434667pt;}
|
|
.yc3{bottom:312.435200pt;}
|
|
.yc6{bottom:312.435733pt;}
|
|
.y6c{bottom:312.913333pt;}
|
|
.y1ba{bottom:313.954667pt;}
|
|
.y51{bottom:315.249267pt;}
|
|
.y26a{bottom:315.752000pt;}
|
|
.y13d{bottom:317.616800pt;}
|
|
.y1d0{bottom:318.514400pt;}
|
|
.y167{bottom:318.517600pt;}
|
|
.ye3{bottom:320.505333pt;}
|
|
.y1a{bottom:320.714533pt;}
|
|
.y92{bottom:321.226000pt;}
|
|
.y23a{bottom:322.152000pt;}
|
|
.y6e{bottom:323.321333pt;}
|
|
.y114{bottom:324.053733pt;}
|
|
.y1f6{bottom:324.225467pt;}
|
|
.y216{bottom:325.200000pt;}
|
|
.y4e{bottom:325.658067pt;}
|
|
.y148{bottom:325.688000pt;}
|
|
.y1a8{bottom:326.708133pt;}
|
|
.y1ab{bottom:326.708667pt;}
|
|
.y1ae{bottom:326.709200pt;}
|
|
.y9f{bottom:329.300000pt;}
|
|
.y249{bottom:330.152000pt;}
|
|
.yc0{bottom:333.250800pt;}
|
|
.yc2{bottom:333.251333pt;}
|
|
.yc5{bottom:333.251867pt;}
|
|
.y6b{bottom:333.729333pt;}
|
|
.y50{bottom:336.065933pt;}
|
|
.y269{bottom:338.152000pt;}
|
|
.y13c{bottom:338.433467pt;}
|
|
.y1cf{bottom:339.331067pt;}
|
|
.y166{bottom:339.334267pt;}
|
|
.y19{bottom:341.530667pt;}
|
|
.y91{bottom:342.042667pt;}
|
|
.y113{bottom:344.869867pt;}
|
|
.y1f5{bottom:345.041600pt;}
|
|
.y28{bottom:349.598667pt;}
|
|
.y239{bottom:352.552000pt;}
|
|
.y215{bottom:355.600000pt;}
|
|
.y13b{bottom:359.250133pt;}
|
|
.y1ce{bottom:360.147733pt;}
|
|
.y18{bottom:362.346800pt;}
|
|
.y90{bottom:362.859333pt;}
|
|
.y1a3{bottom:364.523200pt;}
|
|
.y1a7{bottom:364.524267pt;}
|
|
.y112{bottom:365.686000pt;}
|
|
.y1f4{bottom:365.858267pt;}
|
|
.y268{bottom:368.552000pt;}
|
|
.ybd{bottom:371.067867pt;}
|
|
.y4c{bottom:373.882600pt;}
|
|
.y238{bottom:374.952000pt;}
|
|
.y165{bottom:376.150400pt;}
|
|
.y214{bottom:378.000000pt;}
|
|
.y13a{bottom:380.066800pt;}
|
|
.y1cd{bottom:380.964400pt;}
|
|
.ybe{bottom:381.475680pt;}
|
|
.y6a{bottom:381.954667pt;}
|
|
.y17{bottom:383.162933pt;}
|
|
.y8f{bottom:383.676000pt;}
|
|
.y19f{bottom:385.338800pt;}
|
|
.y1a2{bottom:385.339333pt;}
|
|
.y1a6{bottom:385.340400pt;}
|
|
.y111{bottom:386.502133pt;}
|
|
.y1f3{bottom:386.674400pt;}
|
|
.y267{bottom:390.952000pt;}
|
|
.y9e{bottom:391.748000pt;}
|
|
.ybc{bottom:391.884000pt;}
|
|
.y4b{bottom:394.699267pt;}
|
|
.y49{bottom:394.699800pt;}
|
|
.y164{bottom:396.967067pt;}
|
|
.y139{bottom:400.882933pt;}
|
|
.y69{bottom:402.770667pt;}
|
|
.y1b9{bottom:403.812000pt;}
|
|
.y16{bottom:403.979067pt;}
|
|
.y8e{bottom:404.492667pt;}
|
|
.y237{bottom:405.352000pt;}
|
|
.y19e{bottom:406.154933pt;}
|
|
.y1a1{bottom:406.155467pt;}
|
|
.y1a5{bottom:406.156533pt;}
|
|
.y110{bottom:407.318267pt;}
|
|
.y4a{bottom:415.515933pt;}
|
|
.y213{bottom:416.238667pt;}
|
|
.y1cc{bottom:417.780533pt;}
|
|
.y163{bottom:417.783733pt;}
|
|
.y266{bottom:421.352000pt;}
|
|
.y138{bottom:421.699600pt;}
|
|
.y1f2{bottom:423.490533pt;}
|
|
.y15{bottom:424.795200pt;}
|
|
.y8d{bottom:425.309333pt;}
|
|
.y173{bottom:425.852000pt;}
|
|
.y1a0{bottom:426.971600pt;}
|
|
.y1a4{bottom:426.972667pt;}
|
|
.y236{bottom:427.752000pt;}
|
|
.y27{bottom:432.864000pt;}
|
|
.y9d{bottom:433.381333pt;}
|
|
.ybb{bottom:437.700133pt;}
|
|
.y1cb{bottom:438.597200pt;}
|
|
.y162{bottom:438.600400pt;}
|
|
.y137{bottom:442.516267pt;}
|
|
.y265{bottom:443.752000pt;}
|
|
.y14{bottom:445.611333pt;}
|
|
.y8c{bottom:446.126000pt;}
|
|
.y172{bottom:446.669333pt;}
|
|
.y10f{bottom:450.574533pt;}
|
|
.y48{bottom:453.332600pt;}
|
|
.y235{bottom:458.152000pt;}
|
|
.yba{bottom:458.516800pt;}
|
|
.y1ca{bottom:459.413867pt;}
|
|
.y161{bottom:459.417067pt;}
|
|
.y1f1{bottom:460.306667pt;}
|
|
.y68{bottom:461.402667pt;}
|
|
.y136{bottom:463.332933pt;}
|
|
.y45{bottom:463.741000pt;}
|
|
.y19a{bottom:464.787200pt;}
|
|
.y19d{bottom:464.787733pt;}
|
|
.y13{bottom:466.427467pt;}
|
|
.y8b{bottom:466.942667pt;}
|
|
.y67{bottom:471.812000pt;}
|
|
.y47{bottom:474.149267pt;}
|
|
.y43{bottom:474.149333pt;}
|
|
.y264{bottom:474.152000pt;}
|
|
.y26{bottom:474.497333pt;}
|
|
.y197{bottom:475.194933pt;}
|
|
.yb9{bottom:479.333467pt;}
|
|
.y1c9{bottom:480.230533pt;}
|
|
.y160{bottom:480.233733pt;}
|
|
.y234{bottom:480.552000pt;}
|
|
.y1f0{bottom:481.123333pt;}
|
|
.y10e{bottom:481.798000pt;}
|
|
.y135{bottom:484.149600pt;}
|
|
.y44{bottom:484.557667pt;}
|
|
.y199{bottom:485.603333pt;}
|
|
.y19c{bottom:485.603867pt;}
|
|
.y12{bottom:487.243600pt;}
|
|
.y8a{bottom:487.759333pt;}
|
|
.y1b8{bottom:493.669333pt;}
|
|
.y46{bottom:494.965933pt;}
|
|
.y196{bottom:496.011067pt;}
|
|
.y263{bottom:496.552000pt;}
|
|
.yb8{bottom:500.150133pt;}
|
|
.y1c8{bottom:501.047200pt;}
|
|
.y15f{bottom:501.050400pt;}
|
|
.y1ef{bottom:501.940000pt;}
|
|
.y134{bottom:504.966267pt;}
|
|
.y212{bottom:504.966800pt;}
|
|
.y198{bottom:506.419467pt;}
|
|
.y19b{bottom:506.420000pt;}
|
|
.y11{bottom:508.059733pt;}
|
|
.y233{bottom:510.952000pt;}
|
|
.y25{bottom:516.130667pt;}
|
|
.y262{bottom:518.952000pt;}
|
|
.yb7{bottom:520.966800pt;}
|
|
.y1c7{bottom:521.863867pt;}
|
|
.y15e{bottom:521.867067pt;}
|
|
.y1ee{bottom:522.756667pt;}
|
|
.y89{bottom:524.575467pt;}
|
|
.y211{bottom:525.782933pt;}
|
|
.y10{bottom:528.875867pt;}
|
|
.ye2{bottom:529.036000pt;}
|
|
.y10d{bottom:530.422000pt;}
|
|
.y42{bottom:532.782333pt;}
|
|
.y232{bottom:533.352000pt;}
|
|
.y133{bottom:541.782400pt;}
|
|
.yb6{bottom:541.783467pt;}
|
|
.y1c6{bottom:542.680533pt;}
|
|
.y15d{bottom:542.683733pt;}
|
|
.y40{bottom:543.190667pt;}
|
|
.y1ed{bottom:543.573333pt;}
|
|
.y191{bottom:544.235600pt;}
|
|
.y195{bottom:544.236133pt;}
|
|
.y88{bottom:545.391600pt;}
|
|
.y210{bottom:546.599067pt;}
|
|
.y261{bottom:549.352000pt;}
|
|
.yf{bottom:549.692000pt;}
|
|
.y10c{bottom:551.238133pt;}
|
|
.y41{bottom:553.599000pt;}
|
|
.y18d{bottom:554.642800pt;}
|
|
.y132{bottom:562.599067pt;}
|
|
.yb5{bottom:562.600133pt;}
|
|
.y1c5{bottom:563.497200pt;}
|
|
.y15c{bottom:563.500400pt;}
|
|
.y231{bottom:563.752000pt;}
|
|
.y1ec{bottom:564.390000pt;}
|
|
.y190{bottom:565.051733pt;}
|
|
.y194{bottom:565.052267pt;}
|
|
.y87{bottom:566.207733pt;}
|
|
.y20f{bottom:567.415200pt;}
|
|
.ye{bottom:570.508133pt;}
|
|
.y260{bottom:571.752000pt;}
|
|
.y10b{bottom:572.054267pt;}
|
|
.y18c{bottom:575.458933pt;}
|
|
.y131{bottom:583.415733pt;}
|
|
.yb4{bottom:583.416800pt;}
|
|
.y1b7{bottom:583.526667pt;}
|
|
.y1c4{bottom:584.313867pt;}
|
|
.y15b{bottom:584.317067pt;}
|
|
.y1eb{bottom:585.206667pt;}
|
|
.y18f{bottom:585.867867pt;}
|
|
.y193{bottom:585.868400pt;}
|
|
.y230{bottom:586.152000pt;}
|
|
.y86{bottom:587.023867pt;}
|
|
.y20e{bottom:588.231333pt;}
|
|
.yd{bottom:591.324267pt;}
|
|
.y10a{bottom:592.870400pt;}
|
|
.y18b{bottom:596.275067pt;}
|
|
.y3f{bottom:599.410933pt;}
|
|
.y25f{bottom:602.152000pt;}
|
|
.y130{bottom:604.232400pt;}
|
|
.yb3{bottom:604.233467pt;}
|
|
.y1c3{bottom:605.130533pt;}
|
|
.y15a{bottom:605.133733pt;}
|
|
.y1ea{bottom:606.023333pt;}
|
|
.y18e{bottom:606.684000pt;}
|
|
.y192{bottom:606.684533pt;}
|
|
.y85{bottom:607.840000pt;}
|
|
.y20d{bottom:609.047467pt;}
|
|
.y109{bottom:613.686533pt;}
|
|
.y22f{bottom:616.552000pt;}
|
|
.y3e{bottom:620.227600pt;}
|
|
.y25e{bottom:624.552000pt;}
|
|
.yb2{bottom:625.050133pt;}
|
|
.y1e9{bottom:626.840000pt;}
|
|
.yc{bottom:628.140933pt;}
|
|
.y84{bottom:628.656667pt;}
|
|
.ye1{bottom:633.118667pt;}
|
|
.y108{bottom:634.502667pt;}
|
|
.y22e{bottom:638.952000pt;}
|
|
.y3d{bottom:641.044267pt;}
|
|
.y12f{bottom:641.048533pt;}
|
|
.y1c2{bottom:641.946667pt;}
|
|
.y159{bottom:641.949867pt;}
|
|
.y187{bottom:644.499600pt;}
|
|
.y18a{bottom:644.500133pt;}
|
|
.y20c{bottom:645.864133pt;}
|
|
.yb1{bottom:645.866800pt;}
|
|
.y1e8{bottom:647.656667pt;}
|
|
.yb{bottom:648.957600pt;}
|
|
.y66{bottom:649.118667pt;}
|
|
.y25d{bottom:654.952000pt;}
|
|
.y107{bottom:655.318800pt;}
|
|
.y3c{bottom:661.860933pt;}
|
|
.y12e{bottom:661.865200pt;}
|
|
.y1c1{bottom:662.763333pt;}
|
|
.y158{bottom:662.766000pt;}
|
|
.y184{bottom:665.315200pt;}
|
|
.y186{bottom:665.315733pt;}
|
|
.y189{bottom:665.316267pt;}
|
|
.y20b{bottom:666.680800pt;}
|
|
.yb0{bottom:666.683467pt;}
|
|
.y1e7{bottom:668.472800pt;}
|
|
.y22d{bottom:669.352000pt;}
|
|
.ya{bottom:669.774267pt;}
|
|
.y83{bottom:671.912400pt;}
|
|
.y1b6{bottom:673.384000pt;}
|
|
.y25c{bottom:677.352000pt;}
|
|
.y3b{bottom:682.677600pt;}
|
|
.y12d{bottom:682.681333pt;}
|
|
.y1c0{bottom:683.580000pt;}
|
|
.y157{bottom:683.582133pt;}
|
|
.y185{bottom:686.131867pt;}
|
|
.y188{bottom:686.132400pt;}
|
|
.y20a{bottom:687.497467pt;}
|
|
.yaf{bottom:687.500133pt;}
|
|
.y1e6{bottom:689.289467pt;}
|
|
.y9{bottom:690.590933pt;}
|
|
.y22c{bottom:691.752000pt;}
|
|
.y103{bottom:701.134933pt;}
|
|
.y106{bottom:701.135467pt;}
|
|
.y82{bottom:703.135867pt;}
|
|
.y3a{bottom:703.494267pt;}
|
|
.y12c{bottom:703.498000pt;}
|
|
.y1bf{bottom:704.396667pt;}
|
|
.y156{bottom:704.398267pt;}
|
|
.y25b{bottom:707.752000pt;}
|
|
.y209{bottom:708.314133pt;}
|
|
.y8{bottom:711.407600pt;}
|
|
.y100{bottom:711.542267pt;}
|
|
.y65{bottom:711.566667pt;}
|
|
.y22b{bottom:714.152000pt;}
|
|
.y102{bottom:721.951067pt;}
|
|
.y105{bottom:721.951600pt;}
|
|
.y248{bottom:722.152000pt;}
|
|
.y17d{bottom:723.946933pt;}
|
|
.y181{bottom:723.948000pt;}
|
|
.y39{bottom:724.310933pt;}
|
|
.y12b{bottom:724.314133pt;}
|
|
.yae{bottom:724.316267pt;}
|
|
.y1be{bottom:725.213333pt;}
|
|
.y155{bottom:725.214400pt;}
|
|
.y1e5{bottom:726.106133pt;}
|
|
.y208{bottom:729.130800pt;}
|
|
.y121{bottom:730.017333pt;}
|
|
.y25a{bottom:730.152000pt;}
|
|
.y7{bottom:732.224267pt;}
|
|
.yff{bottom:732.358400pt;}
|
|
.y101{bottom:742.767200pt;}
|
|
.y104{bottom:742.767733pt;}
|
|
.y22a{bottom:744.552000pt;}
|
|
.y179{bottom:744.762533pt;}
|
|
.y17c{bottom:744.763067pt;}
|
|
.y180{bottom:744.764133pt;}
|
|
.y183{bottom:744.764667pt;}
|
|
.y38{bottom:745.127600pt;}
|
|
.y12a{bottom:745.130800pt;}
|
|
.yad{bottom:745.132400pt;}
|
|
.y1bd{bottom:746.030000pt;}
|
|
.y154{bottom:746.030533pt;}
|
|
.y207{bottom:749.947467pt;}
|
|
.y81{bottom:751.760400pt;}
|
|
.y259{bottom:752.552000pt;}
|
|
.y6{bottom:753.040933pt;}
|
|
.y1db{bottom:754.098667pt;}
|
|
.y1e4{bottom:762.922800pt;}
|
|
.y178{bottom:765.578667pt;}
|
|
.y17b{bottom:765.579200pt;}
|
|
.y17f{bottom:765.580267pt;}
|
|
.y182{bottom:765.580800pt;}
|
|
.y37{bottom:765.944267pt;}
|
|
.y129{bottom:765.946933pt;}
|
|
.yac{bottom:765.948533pt;}
|
|
.y153{bottom:766.846667pt;}
|
|
.y229{bottom:766.952000pt;}
|
|
.y206{bottom:770.764133pt;}
|
|
.y80{bottom:772.577067pt;}
|
|
.y64{bottom:774.017333pt;}
|
|
.y247{bottom:774.952000pt;}
|
|
.yfe{bottom:780.582933pt;}
|
|
.y258{bottom:782.952000pt;}
|
|
.y1e3{bottom:783.739467pt;}
|
|
.y17a{bottom:786.395333pt;}
|
|
.y17e{bottom:786.396400pt;}
|
|
.y36{bottom:786.760933pt;}
|
|
.y128{bottom:786.763600pt;}
|
|
.yab{bottom:786.764667pt;}
|
|
.y152{bottom:787.662800pt;}
|
|
.y1bc{bottom:787.663333pt;}
|
|
.y205{bottom:791.580267pt;}
|
|
.y7f{bottom:793.393733pt;}
|
|
.ye0{bottom:794.833333pt;}
|
|
.y5{bottom:796.296667pt;}
|
|
.y228{bottom:797.352000pt;}
|
|
.yf6{bottom:801.398000pt;}
|
|
.yf9{bottom:801.398533pt;}
|
|
.yfd{bottom:801.399067pt;}
|
|
.y1e2{bottom:804.556133pt;}
|
|
.y257{bottom:805.352000pt;}
|
|
.y35{bottom:807.577600pt;}
|
|
.y127{bottom:807.579733pt;}
|
|
.yaa{bottom:807.580800pt;}
|
|
.y151{bottom:808.478933pt;}
|
|
.yf3{bottom:811.805333pt;}
|
|
.y7e{bottom:814.210400pt;}
|
|
.y227{bottom:819.752000pt;}
|
|
.yf5{bottom:822.214133pt;}
|
|
.yf8{bottom:822.214667pt;}
|
|
.yfc{bottom:822.215200pt;}
|
|
.y176{bottom:824.211333pt;}
|
|
.y1bb{bottom:824.479467pt;}
|
|
.y1e1{bottom:825.372800pt;}
|
|
.y4{bottom:827.520667pt;}
|
|
.y246{bottom:827.752000pt;}
|
|
.y34{bottom:828.394267pt;}
|
|
.y126{bottom:828.396400pt;}
|
|
.ya9{bottom:828.396933pt;}
|
|
.y120{bottom:830.282667pt;}
|
|
.yf2{bottom:832.621467pt;}
|
|
.y177{bottom:834.619667pt;}
|
|
.y7d{bottom:835.027067pt;}
|
|
.y256{bottom:835.752000pt;}
|
|
.y63{bottom:836.465333pt;}
|
|
.yf4{bottom:843.030267pt;}
|
|
.yf7{bottom:843.030800pt;}
|
|
.yfb{bottom:843.031333pt;}
|
|
.y175{bottom:845.028000pt;}
|
|
.y150{bottom:845.295600pt;}
|
|
.y1e0{bottom:846.189467pt;}
|
|
.y33{bottom:849.210933pt;}
|
|
.y125{bottom:849.212533pt;}
|
|
.ya8{bottom:849.213067pt;}
|
|
.y226{bottom:850.152000pt;}
|
|
.y255{bottom:858.152000pt;}
|
|
.yfa{bottom:863.847467pt;}
|
|
.y204{bottom:865.212533pt;}
|
|
.y14f{bottom:866.111733pt;}
|
|
.y1df{bottom:867.006133pt;}
|
|
.y32{bottom:870.027600pt;}
|
|
.ya7{bottom:870.029200pt;}
|
|
.y225{bottom:872.552000pt;}
|
|
.y245{bottom:880.552000pt;}
|
|
.y7c{bottom:880.843200pt;}
|
|
.y3{bottom:882.704533pt;}
|
|
.y203{bottom:886.028667pt;}
|
|
.y14e{bottom:886.927867pt;}
|
|
.y1de{bottom:887.822800pt;}
|
|
.y31{bottom:890.844267pt;}
|
|
.ya6{bottom:890.845333pt;}
|
|
.y62{bottom:898.914667pt;}
|
|
.y7b{bottom:901.659867pt;}
|
|
.yeb{bottom:901.661467pt;}
|
|
.y224{bottom:902.952000pt;}
|
|
.y202{bottom:906.844800pt;}
|
|
.y124{bottom:906.845333pt;}
|
|
.y14d{bottom:907.744000pt;}
|
|
.y254{bottom:910.952000pt;}
|
|
.y30{bottom:911.660933pt;}
|
|
.y77{bottom:912.068667pt;}
|
|
.yee{bottom:912.069867pt;}
|
|
.yf1{bottom:912.070400pt;}
|
|
.y7a{bottom:922.476533pt;}
|
|
.yea{bottom:922.477600pt;}
|
|
.y2{bottom:924.336267pt;}
|
|
.y223{bottom:925.352000pt;}
|
|
.y123{bottom:927.661467pt;}
|
|
.ya5{bottom:927.662000pt;}
|
|
.y14c{bottom:928.560133pt;}
|
|
.y1dd{bottom:931.078533pt;}
|
|
.y2f{bottom:932.477600pt;}
|
|
.y76{bottom:932.885333pt;}
|
|
.yed{bottom:932.886000pt;}
|
|
.yf0{bottom:932.886533pt;}
|
|
.y253{bottom:933.352000pt;}
|
|
.y11f{bottom:940.956000pt;}
|
|
.y79{bottom:943.293200pt;}
|
|
.ye9{bottom:943.293733pt;}
|
|
.y122{bottom:948.477600pt;}
|
|
.ya4{bottom:948.478133pt;}
|
|
.y14b{bottom:949.376267pt;}
|
|
.y2e{bottom:953.294267pt;}
|
|
.yec{bottom:953.702133pt;}
|
|
.yef{bottom:953.702667pt;}
|
|
.y222{bottom:955.752000pt;}
|
|
.y1dc{bottom:962.302000pt;}
|
|
.y78{bottom:964.109867pt;}
|
|
.y1{bottom:965.968000pt;}
|
|
.y201{bottom:969.293733pt;}
|
|
.ya3{bottom:969.294267pt;}
|
|
.y221{bottom:978.152000pt;}
|
|
.y252{bottom:986.152000pt;}
|
|
.y200{bottom:990.109867pt;}
|
|
.y2d{bottom:990.110400pt;}
|
|
.y14a{bottom:992.632000pt;}
|
|
.ye7{bottom:1001.926533pt;}
|
|
.y75{bottom:1001.926867pt;}
|
|
.y220{bottom:1008.552000pt;}
|
|
.y2c{bottom:1010.926533pt;}
|
|
.ye8{bottom:1012.334347pt;}
|
|
.y73{bottom:1012.334667pt;}
|
|
.ydf{bottom:1018.997333pt;}
|
|
.ye6{bottom:1022.742667pt;}
|
|
.y74{bottom:1022.743000pt;}
|
|
.y149{bottom:1023.856000pt;}
|
|
.y21f{bottom:1030.952000pt;}
|
|
.y2b{bottom:1031.742667pt;}
|
|
.y61{bottom:1039.813333pt;}
|
|
.h5{height:22.465024pt;}
|
|
.h4{height:44.544000pt;}
|
|
.h7{height:44.937500pt;}
|
|
.h6{height:48.968750pt;}
|
|
.h8{height:50.112000pt;}
|
|
.h3{height:66.816000pt;}
|
|
.h2{height:89.088000pt;}
|
|
.h0{height:1122.520000pt;}
|
|
.h1{height:1122.666667pt;}
|
|
.w0{width:793.706667pt;}
|
|
.w1{width:794.000000pt;}
|
|
.x0{left:0.000000pt;}
|
|
.x3a{left:80.489040pt;}
|
|
.x1{left:83.000000pt;}
|
|
.x7{left:85.671867pt;}
|
|
.x39{left:87.993200pt;}
|
|
.x9{left:92.000000pt;}
|
|
.x2{left:95.911973pt;}
|
|
.x38{left:103.000000pt;}
|
|
.x36{left:180.494667pt;}
|
|
.x6{left:203.024000pt;}
|
|
.x24{left:210.711467pt;}
|
|
.xb{left:215.182267pt;}
|
|
.x2a{left:224.489333pt;}
|
|
.x31{left:226.130667pt;}
|
|
.x28{left:246.010667pt;}
|
|
.x4{left:257.372000pt;}
|
|
.x15{left:266.750667pt;}
|
|
.x18{left:280.732000pt;}
|
|
.x1f{left:283.620000pt;}
|
|
.x3{left:297.050667pt;}
|
|
.x1d{left:298.748000pt;}
|
|
.x22{left:302.644000pt;}
|
|
.x8{left:311.154667pt;}
|
|
.x27{left:320.606667pt;}
|
|
.x30{left:322.676000pt;}
|
|
.x19{left:328.566667pt;}
|
|
.x16{left:344.354667pt;}
|
|
.x11{left:365.790667pt;}
|
|
.x25{left:369.335467pt;}
|
|
.x12{left:370.748000pt;}
|
|
.x17{left:403.410667pt;}
|
|
.x37{left:408.382667pt;}
|
|
.x32{left:414.094667pt;}
|
|
.x2b{left:441.781333pt;}
|
|
.x13{left:469.276000pt;}
|
|
.xd{left:471.705333pt;}
|
|
.x10{left:487.618667pt;}
|
|
.xe{left:489.124000pt;}
|
|
.xa{left:503.177333pt;}
|
|
.x1a{left:505.849333pt;}
|
|
.xf{left:507.742667pt;}
|
|
.xc{left:516.088507pt;}
|
|
.x20{left:520.338667pt;}
|
|
.x2f{left:525.617333pt;}
|
|
.x26{left:527.310133pt;}
|
|
.x1c{left:554.677333pt;}
|
|
.x1e{left:559.185333pt;}
|
|
.x2e{left:562.245333pt;}
|
|
.x21{left:581.206667pt;}
|
|
.x5{left:615.870667pt;}
|
|
.x1b{left:622.174667pt;}
|
|
.x33{left:624.509333pt;}
|
|
.x34{left:627.181333pt;}
|
|
.x35{left:629.073333pt;}
|
|
.x2c{left:646.856000pt;}
|
|
.x29{left:666.417333pt;}
|
|
.x2d{left:670.645333pt;}
|
|
.x14{left:684.645333pt;}
|
|
.x23{left:691.030667pt;}
|
|
}
|
|
</style>
|
|
<script>
|
|
/*
|
|
Copyright 2012 Mozilla Foundation
|
|
Copyright 2013 Lu Wang <coolwanglu@gmail.com>
|
|
Apachine License Version 2.0
|
|
*/
|
|
(function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList;
|
|
var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})();
|
|
</script>
|
|
<script>
|
|
(function(){/*
|
|
pdf2htmlEX.js: Core UI functions for pdf2htmlEX
|
|
Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com> and other contributors
|
|
https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
|
|
*/
|
|
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
|
|
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
|
|
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
|
|
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
|
|
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
|
|
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
|
|
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
|
|
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
|
|
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.outline].concat(Array.from(this.container.querySelectorAll("a.l"))).forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=
|
|
[],b={},c=this.container.childNodes,e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&
|
|
(d=this.loading_indicator.cloneNode(!0),d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);
|
|
disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=
|
|
this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,
|
|
k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();
|
|
var c=a.container,e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-
|
|
1):a.container.scrollTop-=a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;
|
|
if(g.offsetTop+g.clientTop>=c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=
|
|
this.cur_page_idx;this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");c||(b=a.currentTarget,c=b.getAttribute("data-dest-detail"));if(c){if(this.config.view_history_handler)try{var e=
|
|
this.get_current_view_hash();window.history.replaceState(e,"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(null!==k&&"number"!==typeof k)return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),
|
|
d=transform(g.ictm,[d[0],g.height()-d[1]]),g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&
|
|
(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);
|
|
a.push(this.scale);return JSON.stringify(a)}};pdf2htmlEX.Viewer=Viewer;})();
|
|
</script>
|
|
<script>
|
|
try{
|
|
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
|
|
}catch(e){}
|
|
</script>
|
|
<title></title>
|
|
</head>
|
|
<body>
|
|
<div id="sidebar">
|
|
<div id="outline">
|
|
</div>
|
|
</div>
|
|
<div id="page-container">
|
|
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Trax v2 Research and Architecture Analysis: A</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">Deep Dive into Performance, Speaker Diarization,</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">and Advanced Features</div><div class="t m0 x1 h3 y4 ff1 fs1 fc0 sc0 ls0 ws0">The Next Frontier of Accuracy: Multi-Pass Processing and</div><div class="t m0 x1 h3 y5 ff1 fs1 fc0 sc0 ls0 ws0">Domain-Specific Enhancement</div><div class="t m0 x1 h4 y6 ff2 fs2 fc0 sc0 ls0 ws0">The pursuit of transcription accuracy beyond the 95% baseline achieved by Whisper distil-large-v3 is</div><div class="t m0 x1 h4 y7 ff2 fs2 fc0 sc0 ls0 ws0">a primary driver for Trax v2. The research indicates that this can be accomplished through two</div><div class="t m0 x1 h4 y8 ff2 fs2 fc0 sc0 ls0 ws0">distinct yet complementary strategies: multi-pass processing to refine transcriptions iteratively, and</div><div class="t m0 x1 h4 y9 ff2 fs2 fc0 sc0 ls0 ws0">domain-specific enhancement to tailor the model's understanding to specialized content. These</div><div class="t m0 x1 h4 ya ff2 fs2 fc0 sc0 ls0 ws0">approaches move beyond a single-pass inference model, embracing a more sophisticated pipeline</div><div class="t m0 x1 h4 yb ff2 fs2 fc0 sc0 ls0 ws0">architecture where outputs from one stage serve as inputs or context for subsequent stages, leading</div><div class="t m0 x1 h4 yc ff2 fs2 fc0 sc0 ls0 ws0">to significant quality improvements.</div><div class="t m0 x1 h4 yd ff2 fs2 fc0 sc0 ls0 ws0">Multi-pass processing represents a paradigm shift in ASR systems, designed to bridge the gap</div><div class="t m0 x1 h4 ye ff2 fs2 fc0 sc0 ls0 ws0">between real-time responsiveness and offline-quality accuracy. This strategy involves chaining</div><div class="t m0 x1 h4 yf ff2 fs2 fc0 sc0 ls0 ws0">multiple models together, often with different strengths, to progressively improve the final transcript.</div><div class="t m0 x1 h4 y10 ff2 fs2 fc0 sc0 ls0 ws0">One of the most compelling examples is the two-pass end-to-end speech recognition system</div><div class="t m0 x1 h4 y11 ff2 fs2 fc0 sc0 ls0 ws0">developed by Google researchers <span class="_ _0"> </span>. This architecture pairs a fast, streaming Recognizer Neural</div><div class="t m0 x1 h4 y12 ff2 fs2 fc0 sc0 ls0 ws0">Transducer (RNN-T) model with a slower, non-streaming Listen, Attend and Spell (LAS) model that</div><div class="t m0 x1 h4 y13 ff2 fs2 fc0 sc0 ls0 ws0">shares an encoder network <span class="_ _1"> </span>. The RNN-T acts as a first pass, providing a preliminary hypothesis</div><div class="t m0 x1 h4 y14 ff2 fs2 fc0 sc0 ls0 ws0">quickly, while the LAS model performs a deeper rescoring of the top-K hypotheses from the first</div><div class="t m0 x1 h4 y15 ff2 fs2 fc0 sc0 ls0 ws0">pass, leveraging its attention-based mechanism to capture longer-range dependencies <span class="_ _0"> </span>. This</div><div class="t m0 x1 h4 y16 ff2 fs2 fc0 sc0 ls0 ws0">approach has been shown to achieve a 17%-22% relative Word Error Rate (WER) reduction</div><div class="t m0 x1 h4 y17 ff2 fs2 fc0 sc0 ls0 ws0">compared to the RNN-T alone, effectively closing the quality gap with traditional non-streaming</div><div class="t m0 x1 h4 y18 ff2 fs2 fc0 sc0 ls0 ws0">models, all while keeping the latency increase under 200ms—a trade-off that is highly favorable for</div><div class="t m0 x1 h4 y19 ff2 fs2 fc0 sc0 ls0 ws0">many applications <span class="_ _2"> </span>. Further innovation comes from cascaded systems that optimize for</div><div class="t m0 x1 h4 y1a ff2 fs2 fc0 sc0 ls0 ws0">efficiency; one study demonstrated reducing the frame rate of the second pass by half resulted in a</div><div class="t m0 x1 h4 y1b ff2 fs2 fc0 sc0 ls0 ws0">20% reduction in Real-Time Factor (RTF) and 13% power savings without impacting final accuracy </div><div class="t m0 x2 h4 y1c ff2 fs2 fc0 sc0 ls0 ws0">.</div><div class="t m0 x1 h4 y1d ff2 fs2 fc0 sc0 ls0 ws0">Another powerful technique within the multi-pass framework is iterative refinement, which leverages</div><div class="t m0 x1 h4 y1e ff2 fs2 fc0 sc0 ls0 ws0">the output of a transcription model to directly improve its own performance. Research shows that</div><div class="t m0 x1 h4 y1f ff2 fs2 fc0 sc0 ls0 ws0">self-supervised speech models like HuBERT become better at representing linguistic features with</div><div class="t m0 x1 h4 y20 ff2 fs2 fc0 sc0 ls0 ws0">each training iteration, improving their correlation with canonical phoneme and word identities while</div><div class="t m0 x1 h4 y21 ff2 fs2 fc0 sc0 ls0 ws0">de-correlating from speaker identity <span class="_ _0"> </span>. This suggests that using a model's own pseudo-labels to</div><div class="t m0 x1 h4 y22 ff2 fs2 fc0 sc0 ls0 ws0">create new training data for subsequent iterations enhances its core capabilities. An even more</div><div class="t m0 x1 h4 y23 ff2 fs2 fc0 sc0 ls0 ws0">advanced concept is mutual enhancement, where ASR and Voice Conversion (VC) models are</div><div class="t m0 x1 h4 y24 ff2 fs2 fc0 sc0 ls0 ws0">trained in a loop, with the ASR model generating text to train the VC model, and the VC model</div><div class="t m0 x3 h5 y25 ff1 fs3 fc1 sc0 ls0 ws0">8</div><div class="t m0 x4 h5 y26 ff1 fs3 fc1 sc0 ls0 ws0">4<span class="_ _3"> </span>8</div><div class="t m0 x5 h5 y27 ff1 fs3 fc1 sc0 ls0 ws0">8</div><div class="t m0 x6 h5 y28 ff1 fs3 fc1 sc0 ls0 ws0">2<span class="_ _3"> </span>4<span class="_ _3"> </span>8</div><div class="t m0 x7 h5 y29 ff1 fs3 fc1 sc0 ls0 ws0">22</div><div class="t m0 x8 h5 y2a ff1 fs3 fc1 sc0 ls0 ws0">23</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:220.575000px;bottom:385.496000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,177.126,null]'><div class="d m1" style="border-style:none;position:absolute;left:190.817000px;bottom:354.272000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:200.501000px;bottom:354.272000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:459.690000px;bottom:323.047000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,256.326,null]'><div class="d m1" style="border-style:none;position:absolute;left:150.055000px;bottom:260.598000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,177.126,null]'><div class="d m1" style="border-style:none;position:absolute;left:159.739000px;bottom:260.598000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:169.423000px;bottom:260.598000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,135.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:63.460500px;bottom:213.761000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,95.6398,null]'><div class="d m1" style="border-style:none;position:absolute;left:232.573000px;bottom:123.699000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y2b ff2 fs2 fc0 sc0 ls0 ws0">generating synthesized audio to augment the ASR training set <span class="_ _0"> </span>. While complex, this approach</div><div class="t m0 x1 h4 y2c ff2 fs2 fc0 sc0 ls0 ws0">demonstrates how models can learn from each other without requiring massive annotated datasets,</div><div class="t m0 x1 h4 y2d ff2 fs2 fc0 sc0 ls0 ws0">pointing towards a future where Trax could continuously improve its own transcription engine.</div><div class="t m0 x1 h4 y2e ff2 fs2 fc0 sc0 ls0 ws0">Domain-specific enhancement addresses the challenge of maintaining high accuracy across diverse</div><div class="t m0 x1 h4 y2f ff2 fs2 fc0 sc0 ls0 ws0">content types, such as technical lectures, medical consultations, or noisy conference calls. The</div><div class="t m0 x1 h4 y30 ff2 fs2 fc0 sc0 ls0 ws0">industry standard for this is full-scale fine-tuning on domain-specific data, but this is computationally</div><div class="t m0 x1 h4 y31 ff2 fs2 fc0 sc0 ls0 ws0">expensive and risks catastrophic forgetting of general knowledge <span class="_ _0"> </span>. Fortunately, the field of</div><div class="t m0 x1 h4 y32 ff2 fs2 fc0 sc0 ls0 ws0">Parameter-Efficient Fine-Tuning (PEFT) offers elegant solutions. Low-Rank Adaptation (LoRA) is a</div><div class="t m0 x1 h4 y33 ff2 fs2 fc0 sc0 ls0 ws0">standout method that freezes the vast majority of the pre-trained model's weights and injects small,</div><div class="t m0 x1 h4 y34 ff2 fs2 fc0 sc0 ls0 ws0">trainable "rank decomposition" matrices into the transformer layers <span class="_ _1"> </span>. This drastically reduces</div><div class="t m0 x1 h4 y35 ff2 fs2 fc0 sc0 ls0 ws0">memory requirements and training time while achieving near-full fine-tuning performance. For</div><div class="t m0 x1 h4 y36 ff2 fs2 fc0 sc0 ls0 ws0">instance, LoRA was used to adapt Whisper for domain adaptation with less than 0.1% of the total</div><div class="t m0 x1 h4 y37 ff2 fs2 fc0 sc0 ls0 ws0">model parameters, resulting in WER reductions of over 3 points <span class="_ _0"> </span>. Other PEFT methods include</div><div class="t m0 x1 h4 y38 ff2 fs2 fc0 sc0 ls0 ws0">prompt tuning, which learns a small, trainable "prompt" vector to steer the model's behavior, and</div><div class="t m0 x1 h4 y39 ff2 fs2 fc0 sc0 ls0 ws0">speech prefix tuning (SPT), which appends fixed-length vectors to input features and has been</div><div class="t m0 x1 h4 y3a ff2 fs2 fc0 sc0 ls0 ws0">shown to outperform LoRA on certain tasks <span class="_ _1"> </span>. A particularly innovative approach involves text-</div><div class="t m0 x1 h4 y3b ff2 fs2 fc0 sc0 ls0 ws0">only fine-tuning, where only the Language Model (LLM) component of a Speech LLM is adapted</div><div class="t m0 x1 h4 y3c ff2 fs2 fc0 sc0 ls0 ws0">using unpaired target-domain text, preserving the original speech encoder's integrity and avoiding</div><div class="t m0 x1 h4 y3d ff2 fs2 fc0 sc0 ls0 ws0">performance degradation on general domains <span class="_ _0"> </span>. This allows Trax to build a highly accurate,</div><div class="t m0 x1 h4 y3e ff2 fs2 fc0 sc0 ls0 ws0">specialized model for a niche domain like financial reporting or legal proceedings without bloating</div><div class="t m0 x1 h4 y3f ff2 fs2 fc0 sc0 ls0 ws0">the overall system.</div><div class="t m0 x9 h4 y40 ff1 fs2 fc2 sc0 ls0 ws0">Feature<span class="_ _4"> </span>Multi-Pass Processing</div><div class="t m0 xa h4 y41 ff1 fs2 fc2 sc0 ls0 ws0">Domain-Specific Enhancement</div><div class="t m0 xa h4 y42 ff1 fs2 fc2 sc0 ls0 ws0">(PEFT)</div><div class="t m0 x9 h4 y43 ff1 fs2 fc0 sc0 ls0 ws0">Core Principle</div><div class="t m0 xb h4 y44 ff2 fs2 fc0 sc0 ls0 ws0">Chaining multiple models (e.g., fast-first,</div><div class="t m0 xb h4 y45 ff2 fs2 fc0 sc0 ls0 ws0">slow-second) to refine results iteratively <span class="_ _0"> </span>.</div><div class="t m0 xa h4 y46 ff2 fs2 fc0 sc0 ls0 ws0">Modifying a small fraction of a</div><div class="t m0 xa h4 y47 ff2 fs2 fc0 sc0 ls0 ws0">pre-trained model's weights to</div><div class="t m0 xa h4 y48 ff2 fs2 fc0 sc0 ls0 ws0">adapt it to a specific domain <span class="_ _0"> </span>.</div><div class="t m0 x9 h4 y49 ff1 fs2 fc0 sc0 ls0 ws0">Primary Benefit</div><div class="t m0 xb h4 y4a ff2 fs2 fc0 sc0 ls0 ws0">Achieves near-offline accuracy with low</div><div class="t m0 xb h4 y4b ff2 fs2 fc0 sc0 ls0 ws0">latency <span class="_ _0"> </span>. Enables high accuracy in</div><div class="t m0 xb h4 y4c ff2 fs2 fc0 sc0 ls0 ws0">specialized contexts <span class="_ _0"> </span>.</div><div class="t m0 x9 h4 y4d ff1 fs2 fc0 sc0 ls0 ws0">Key Techniques</div><div class="t m0 xb h4 y4e ff2 fs2 fc0 sc0 ls0 ws0">Shared-encoder architectures <span class="_ _0"> </span>, N-best</div><div class="t m0 xb h4 y4d ff2 fs2 fc0 sc0 ls0 ws0">rescoring <span class="_ _0"> </span>, adaptive beam search <span class="_ _0"> </span>,</div><div class="t m0 xb h4 y4f ff2 fs2 fc0 sc0 ls0 ws0">cascaded systems <span class="_ _0"> </span>.</div><div class="t m0 xa h4 y50 ff2 fs2 fc0 sc0 ls0 ws0">Low-Rank Adaptation (LoRA) </div><div class="t m0 xc h4 y51 ff2 fs2 fc0 sc0 ls0 ws0">, Prompt Tuning <span class="_ _0"> </span>, Text-</div><div class="t m0 xa h4 y52 ff2 fs2 fc0 sc0 ls0 ws0">Only Fine-Tuning <span class="_ _0"> </span>, Adapter</div><div class="t m0 xa h4 y53 ff2 fs2 fc0 sc0 ls0 ws0">Tuning <span class="_ _0"> </span>.</div><div class="t m0 x9 h4 y54 ff1 fs2 fc0 sc0 ls0 ws0">Performance</div><div class="t m0 x9 h4 y55 ff1 fs2 fc0 sc0 ls0 ws0">Impact</div><div class="t m0 xb h4 y56 ff2 fs2 fc0 sc0 ls0 ws0">17-22% relative WER reduction vs. single-</div><div class="t m0 xb h4 y57 ff2 fs2 fc0 sc0 ls0 ws0">pass models <span class="_ _0"> </span>. 3-11 absolute point WER</div><div class="t m0 xb h4 y58 ff2 fs2 fc0 sc0 ls0 ws0">reduction <span class="_ _1"> </span>.</div><div class="t m0 x9 h4 y59 ff1 fs2 fc0 sc0 ls0 ws0">Implementation</div><div class="t m0 x9 h4 y5a ff1 fs2 fc0 sc0 ls0 ws0">Cost</div><div class="t m0 xb h4 y5b ff2 fs2 fc0 sc0 ls0 ws0">Increased complexity in pipeline</div><div class="t m0 xb h4 y5c ff2 fs2 fc0 sc0 ls0 ws0">architecture. Requires managing multiple</div><div class="t m0 xb h4 y5d ff2 fs2 fc0 sc0 ls0 ws0">models.</div><div class="t m0 xa h4 y5e ff2 fs2 fc0 sc0 ls0 ws0">Low computational cost for</div><div class="t m0 xa h4 y5f ff2 fs2 fc0 sc0 ls0 ws0">adaptation. Minimal storage</div><div class="t m0 xa h4 y60 ff2 fs2 fc0 sc0 ls0 ws0">overhead for adapter modules.</div><div class="t m0 xd h5 y61 ff1 fs3 fc1 sc0 ls0 ws0">1</div><div class="t m0 xe h5 y62 ff1 fs3 fc1 sc0 ls0 ws0">32</div><div class="t m0 xf h5 y63 ff1 fs3 fc1 sc0 ls0 ws0">31<span class="_ _5"> </span>33</div><div class="t m0 x10 h5 y64 ff1 fs3 fc1 sc0 ls0 ws0">28</div><div class="t m0 x11 h5 y65 ff1 fs3 fc1 sc0 ls0 ws0">34<span class="_ _5"> </span>57</div><div class="t m0 x12 h5 y66 ff1 fs3 fc1 sc0 ls0 ws0">29</div><div class="t m0 x13 h5 y67 ff1 fs3 fc1 sc0 ls0 ws0">8</div><div class="t m0 x14 h5 y68 ff1 fs3 fc1 sc0 ls0 ws0">31</div><div class="t m0 x15 h5 y69 ff1 fs3 fc1 sc0 ls0 ws0">4</div><div class="t m0 x16 h5 y6a ff1 fs3 fc1 sc0 ls0 ws0">51</div><div class="t m0 x17 h5 y6b ff1 fs3 fc1 sc0 ls0 ws0">8</div><div class="t m0 x18 h5 y6c ff1 fs3 fc1 sc0 ls0 ws0">8<span class="_ _6"> </span>4</div><div class="t m0 x19 h5 y6d ff1 fs3 fc1 sc0 ls0 ws0">22</div><div class="t m0 x1a h5 y6e ff1 fs3 fc1 sc0 ls0 ws0">36<span class="_ _7"> </span>41</div><div class="t m0 x1b h5 y6f ff1 fs3 fc1 sc0 ls0 ws0">29</div><div class="t m0 x1c h5 y70 ff1 fs3 fc1 sc0 ls0 ws0">30</div><div class="t m0 x1d h5 y71 ff1 fs3 fc1 sc0 ls0 ws0">2</div><div class="t m0 x18 h5 y72 ff1 fs3 fc1 sc0 ls0 ws0">28<span class="_ _5"> </span>29</div><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,295.926,null]'><div class="d m1" style="border-style:none;position:absolute;left:351.566000px;bottom:778.259000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,452.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:366.050000px;bottom:672.585000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,491.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:380.013000px;bottom:625.748000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,412.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:389.697000px;bottom:625.748000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,610.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:364.920000px;bottom:578.911000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,372.84,null]'><div class="d m1" style="border-style:none;position:absolute;left:273.550000px;bottom:532.074000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pff" data-dest-detail='[15,"XYZ",77.25,746.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:283.234000px;bottom:532.074000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,570.84,null]'><div class="d m1" style="border-style:none;position:absolute;left:277.268000px;bottom:485.237000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:349.745000px;bottom:352.257000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,491.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:512.690000px;bottom:344.451000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,177.126,null]'><div class="d m1" style="border-style:none;position:absolute;left:197.850000px;bottom:300.477000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfe" data-dest-detail='[14,"XYZ",77.25,266.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:257.472000px;bottom:284.864000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:300.345000px;bottom:248.696000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:208.337000px;bottom:233.083000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,177.126,null]'><div class="d m1" style="border-style:none;position:absolute;left:326.011000px;bottom:233.083000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,135.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:245.632000px;bottom:217.471000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,293.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:378.593000px;bottom:240.890000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfe" data-dest-detail='[14,"XYZ",77.25,729.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:469.271000px;bottom:240.890000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,570.84,null]'><div class="d m1" style="border-style:none;position:absolute;left:465.838000px;bottom:225.277000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,531.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:415.214000px;bottom:209.665000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,256.326,null]'><div class="d m1" style="border-style:none;position:absolute;left:221.848000px;bottom:165.690000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,610.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:209.969000px;bottom:150.078000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,570.84,null]'><div class="d m1" style="border-style:none;position:absolute;left:219.653000px;bottom:150.078000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x9 h4 y73 ff1 fs2 fc2 sc0 ls0 ws0">Feature<span class="_ _4"> </span>Multi-Pass Processing</div><div class="t m0 xa h4 y74 ff1 fs2 fc2 sc0 ls0 ws0">Domain-Specific Enhancement</div><div class="t m0 xa h4 y75 ff1 fs2 fc2 sc0 ls0 ws0">(PEFT)</div><div class="t m0 x9 h4 y76 ff1 fs2 fc0 sc0 ls0 ws0">Use Case for</div><div class="t m0 x9 h4 y77 ff1 fs2 fc0 sc0 ls0 ws0">Trax</div><div class="t m0 xb h4 y78 ff2 fs2 fc0 sc0 ls0 ws0">Ideal for creating a "quality" processing</div><div class="t m0 xb h4 y79 ff2 fs2 fc0 sc0 ls0 ws0">path that users can select for critical</div><div class="t m0 xb h4 y7a ff2 fs2 fc0 sc0 ls0 ws0">transcripts. Enables creation of lightweight,</div><div class="t m0 xb h4 y7b ff2 fs2 fc0 sc0 ls0 ws0">specialized "modules" for different</div><div class="t m0 xb h4 y7c ff2 fs2 fc0 sc0 ls0 ws0">verticals.</div><div class="t m0 x1 h4 y7d ff2 fs2 fc0 sc0 ls0 ws0">In summary, the path to 99.5%+ accuracy for Trax v2 is not through a single architectural leap but</div><div class="t m0 x1 h4 y7e ff2 fs2 fc0 sc0 ls0 ws0">through a layered, intelligent approach. By implementing a multi-pass processing pipeline, Trax can</div><div class="t m0 x1 h4 y7f ff2 fs2 fc0 sc0 ls0 ws0">offer superior accuracy as a selectable feature. By integrating PEFT techniques like LoRA, Trax can</div><div class="t m0 x1 h4 y80 ff2 fs2 fc0 sc0 ls0 ws0">provide deep domain specialization without sacrificing its core generality or performance, positioning</div><div class="t m0 x1 h4 y81 ff2 fs2 fc0 sc0 ls0 ws0">itself as a versatile and powerful tool for a wide range of professional use cases.</div><div class="t m0 x1 h3 y82 ff1 fs1 fc0 sc0 ls0 ws0">Mastering Conversational Audio: State-of-the-Art Speaker</div><div class="t m0 x1 h3 y83 ff1 fs1 fc0 sc0 ls0 ws0">Diarization and Voice Profiling</div><div class="t m0 x1 h4 y84 ff2 fs2 fc0 sc0 ls0 ws0">Speaker diarization—the process of identifying <span class="ff3">who</span> spoke when in a conversation—is a critical</div><div class="t m0 x1 h4 y85 ff2 fs2 fc0 sc0 ls0 ws0">feature for any modern transcription platform, transforming a monolithic transcript into an</div><div class="t m0 x1 h4 y86 ff2 fs2 fc0 sc0 ls0 ws0">actionable document. For Trax v2, achieving robust and accurate speaker diarization is paramount,</div><div class="t m0 x1 h4 y87 ff2 fs2 fc0 sc0 ls0 ws0">especially given the user's interest in handling conversations. The current state of the art offers a</div><div class="t m0 x1 h4 y88 ff2 fs2 fc0 sc0 ls0 ws0">spectrum of solutions, from established open-source frameworks to cutting-edge deep learning</div><div class="t m0 x1 h4 y89 ff2 fs2 fc0 sc0 ls0 ws0">models, each with distinct trade-offs in accuracy, latency, and resource consumption.</div><div class="t m0 x1 h4 y8a ff2 fs2 fc0 sc0 ls0 ws0">The most effective speaker diarization systems today are typically modular, combining several</div><div class="t m0 x1 h4 y8b ff2 fs2 fc0 sc0 ls0 ws0">components: a Voice Activity Detector (VAD) to segment the audio into speech turns, an</div><div class="t m0 x1 h4 y8c ff2 fs2 fc0 sc0 ls0 ws0">embedding extractor to generate a compact speaker representation ("d-vector" or "x-vector") for</div><div class="t m0 x1 h4 y8d ff2 fs2 fc0 sc0 ls0 ws0">each turn, and a clustering algorithm to group these embeddings by speaker <span class="_ _0"> </span>. Frameworks like</div><div class="t m0 x1 h4 y8e ff2 fs2 fc0 sc0 ls0 ws0">Pyannote.audio have become a de facto standard in this space, offering a well-engineered</div><div class="t m0 x1 h4 y8f ff2 fs2 fc0 sc0 ls0 ws0">implementation of this pipeline <span class="_ _1"> </span>. However, recent advancements in end-to-end (E2E) neural</div><div class="t m0 x1 h4 y90 ff2 fs2 fc0 sc0 ls0 ws0">speaker diarization promise to simplify this process. Models like EEND (End-to-End Neural</div><div class="t m0 x1 h4 y91 ff2 fs2 fc0 sc0 ls0 ws0">Speaker Diarization) replace the separate clustering step with a single neural network that predicts</div><div class="t m0 x1 h4 y92 ff2 fs2 fc0 sc0 ls0 ws0">the number of speakers and assigns a label to each frame of the input <span class="_ _1"> </span>. While promising, E2E</div><div class="t m0 x1 h4 y93 ff2 fs2 fc0 sc0 ls0 ws0">models often face challenges with latency and require fixed speaker limits, making them less suitable</div><div class="t m0 x1 h4 y94 ff2 fs2 fc0 sc0 ls0 ws0">for real-time applications or scenarios with an unknown number of participants <span class="_ _0"> </span>.</div><div class="t m0 x1 h4 y95 ff2 fs2 fc0 sc0 ls0 ws0">Comparative studies provide crucial insights into the performance of these systems. In a direct</div><div class="t m0 x1 h4 y96 ff2 fs2 fc0 sc0 ls0 ws0">comparison on a hobbyist-grade project, Taishin Maeda evaluated Pyannote.audio against NVIDIA</div><div class="t m0 x1 h4 y97 ff2 fs2 fc0 sc0 ls0 ws0">NeMo on two different audio files <span class="_ _0"> </span>. On a 5-minute, two-speaker file, NeMo achieved a lower</div><div class="t m0 x1 h4 y98 ff2 fs2 fc0 sc0 ls0 ws0">Diarization Error Rate (DER) of 16.1% compared to Pyannote's 25.2%, albeit at the cost of double</div><div class="t m0 x1 h4 y99 ff2 fs2 fc0 sc0 ls0 ws0">the execution time (63.9s vs 31.3s). On a more challenging 9-minute, nine-speaker file, Pyannote</div><div class="t m0 x1 h4 y9a ff2 fs2 fc0 sc0 ls0 ws0">performed slightly better with a DER of 8.3% versus NeMo's 9.7% (with pre-identified speakers) <span class="_ _0"> </span>.</div><div class="t m0 x1 h4 y9b ff2 fs2 fc0 sc0 ls0 ws0">Another study benchmarked various systems on the Voxconverse dataset and found that DIART,</div><div class="t m0 x1 h6 y9c ff2 fs2 fc0 sc0 ls0 ws0">based on <span class="ff4">pyannote/segmentation</span> and <span class="ff4">pyannote/embedding</span>, had the lowest latency at</div><div class="t m0 x1e h5 y9d ff1 fs3 fc1 sc0 ls0 ws0">9</div><div class="t m0 x1f h5 y9e ff1 fs3 fc1 sc0 ls0 ws0">10<span class="_ _5"> </span>12</div><div class="t m0 x20 h5 y9f ff1 fs3 fc1 sc0 ls0 ws0">7<span class="_ _8"> </span>13</div><div class="t m0 x21 h5 ya0 ff1 fs3 fc1 sc0 ls0 ws0">13</div><div class="t m0 x22 h5 ya1 ff1 fs3 fc1 sc0 ls0 ws0">12</div><div class="t m0 x23 h5 ya2 ff1 fs3 fc1 sc0 ls0 ws0">12</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,666.84,null]'><div class="d m1" style="border-style:none;position:absolute;left:417.176000px;bottom:323.435000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,627.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:211.922000px;bottom:292.210000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,548.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:221.606000px;bottom:292.210000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,746.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:388.041000px;bottom:245.373000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,491.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:397.725000px;bottom:245.373000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,491.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:435.111000px;bottom:214.149000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,548.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:226.189000px;bottom:155.312000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,548.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:517.480000px;bottom:108.475000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y2b ff2 fs2 fc0 sc0 ls0 ws0">just 0.057 seconds per chunk on a CPU, whereas another E2E model, UIS-RNN-SML, became</div><div class="t m0 x1 h4 y2c ff2 fs2 fc0 sc0 ls0 ws0">impractically slow on long recordings <span class="_ _0"> </span>. These findings suggest that for a project like Trax, which</div><div class="t m0 x1 h4 y2d ff2 fs2 fc0 sc0 ls0 ws0">values both accuracy and performance, a hybrid approach might be optimal: using a highly efficient,</div><div class="t m0 x1 h4 ya3 ff2 fs2 fc0 sc0 ls0 ws0">lightweight system like DIART or a custom-built module for initial, real-time processing, and</div><div class="t m0 x1 h4 ya4 ff2 fs2 fc0 sc0 ls0 ws0">reserving heavier, more accurate models like Pyannote for post-processing or user-selected</div><div class="t m0 x1 h4 ya5 ff2 fs2 fc0 sc0 ls0 ws0">"enhanced" analysis modes.</div><div class="t m0 x1 h4 ya6 ff2 fs2 fc0 sc0 ls0 ws0">Latency is a critical factor, especially for real-time applications. Most modern systems operate with</div><div class="t m0 x1 h4 ya7 ff2 fs2 fc0 sc0 ls0 ws0">some degree of look-ahead, analyzing a few hundred milliseconds of future audio to make more</div><div class="t m0 x1 h4 ya8 ff2 fs2 fc0 sc0 ls0 ws0">confident decisions about speaker changes and endpointing. Bilal Rahou et al. proposed a causal</div><div class="t m0 x1 h4 ya9 ff2 fs2 fc0 sc0 ls0 ws0">segmentation model that uses a multi-latency look-ahead during training, allowing it to dynamically</div><div class="t m0 x1 h4 yaa ff2 fs2 fc0 sc0 ls0 ws0">adjust its latency to balance performance with speed, nearly matching offline model accuracy with</div><div class="t m0 x1 h4 yab ff2 fs2 fc0 sc0 ls0 ws0">just 500ms of look-ahead <span class="_ _0"> </span>. In contrast, AssemblyAI's diarization model is currently limited to</div><div class="t m0 x1 h4 yac ff2 fs2 fc0 sc0 ls0 ws0">asynchronous transcription, not real-time streams, highlighting the technical hurdles involved <span class="_ _0"> </span>. For</div><div class="t m0 x1 h4 yad ff2 fs2 fc0 sc0 ls0 ws0">Trax v2, a configurable latency setting would be a powerful feature, allowing users to trade a slight</div><div class="t m0 x1 h4 yae ff2 fs2 fc0 sc0 ls0 ws0">delay for significantly improved accuracy in detecting overlapping speech and speaker turns.</div><div class="t m0 x1 h4 yaf ff2 fs2 fc0 sc0 ls0 ws0">Beyond simple diarization, voice profiling and privacy-preserving methods represent the next</div><div class="t m0 x1 h4 yb0 ff2 fs2 fc0 sc0 ls0 ws0">frontier. Speaker identification, the task of labeling who a speaker is, can be enhanced by adapting</div><div class="t m0 x1 h4 yb1 ff2 fs2 fc0 sc0 ls0 ws0">models like ECAPA-TDNN with speaker embeddings, which has been shown to improve DER on</div><div class="t m0 x1 h4 yb2 ff2 fs2 fc0 sc0 ls0 ws0">children's speech data <span class="_ _0"> </span>. For privacy-sensitive applications, techniques like zero-party</div><div class="t m0 x1 h4 yb3 ff2 fs2 fc0 sc0 ls0 ws0">authentication, where no actual voice samples are stored, become essential. Furthermore, a novel and</div><div class="t m0 x1 h4 yb4 ff2 fs2 fc0 sc0 ls0 ws0">highly effective technique involves using a Large Language Model (LLM) as a post-processing step to</div><div class="t m0 x1 h4 yb5 ff2 fs2 fc0 sc0 ls0 ws0">correct diarization errors. Researchers fine-tuned a Mistral 7b model on the Fisher corpus to analyze</div><div class="t m0 x1 h4 yb6 ff2 fs2 fc0 sc0 ls0 ws0">transcripts from various ASR systems and correct speaker labels, demonstrating an ASR-agnostic</div><div class="t m0 x1 h4 yb7 ff2 fs2 fc0 sc0 ls0 ws0">correction capability that significantly improved accuracy <span class="_ _1"> </span>. This opens up a fascinating possibility</div><div class="t m0 x1 h4 yb8 ff2 fs2 fc0 sc0 ls0 ws0">for Trax v2: after producing a raw transcript with speaker labels, it could run the text through a</div><div class="t m0 x1 h4 yb9 ff2 fs2 fc0 sc0 ls0 ws0">specialized LLM-based diarization-corrector to produce a polished, expertly labeled version. This</div><div class="t m0 x1 h4 yba ff2 fs2 fc0 sc0 ls0 ws0">approach decouples the core transcription task from the complex, context-dependent task of speaker</div><div class="t m0 x1 h4 ybb ff2 fs2 fc0 sc0 ls0 ws0">attribution, potentially leading to higher overall accuracy and greater flexibility.</div><div class="t m0 x9 h4 ybc ff1 fs2 fc2 sc0 ls0 ws0">System /</div><div class="t m0 x9 h4 ybd ff1 fs2 fc2 sc0 ls0 ws0">Technique</div><div class="t m0 x24 h4 ybe ff1 fs2 fc2 sc0 ls0 ws0">Key Strengths<span class="_ _9"> </span>Key Weaknesses<span class="_ _a"> </span>Latency Profile<span class="_ _b"> </span>Source(s)</div><div class="t m0 x9 h4 ybf ff1 fs2 fc0 sc0 ls0 ws0">Pyannote.audio</div><div class="t m0 x24 h4 yc0 ff2 fs2 fc0 sc0 ls0 ws0">High accuracy, mature</div><div class="t m0 x24 h4 ybf ff2 fs2 fc0 sc0 ls0 ws0">ecosystem, extensive</div><div class="t m0 x24 h4 yc1 ff2 fs2 fc0 sc0 ls0 ws0">documentation.</div><div class="t m0 x25 h4 yc2 ff2 fs2 fc0 sc0 ls0 ws0">Slower than some</div><div class="t m0 x25 h4 yc3 ff2 fs2 fc0 sc0 ls0 ws0">alternatives, especially</div><div class="t m0 x25 h4 yc4 ff2 fs2 fc0 sc0 ls0 ws0">on long audio.</div><div class="t m0 x26 h4 yc5 ff2 fs2 fc0 sc0 ls0 ws0">~31s for 5min</div><div class="t m0 x26 h4 yc6 ff2 fs2 fc0 sc0 ls0 ws0">audio on RTX</div><div class="t m0 x26 h4 yc7 ff2 fs2 fc0 sc0 ls0 ws0">3090.</div><div class="t m0 x9 h4 yc8 ff1 fs2 fc0 sc0 ls0 ws0">NVIDIA</div><div class="t m0 x9 h4 yc9 ff1 fs2 fc0 sc0 ls0 ws0">NeMo</div><div class="t m0 x24 h4 yca ff2 fs2 fc0 sc0 ls0 ws0">Lower DER than</div><div class="t m0 x24 h4 ycb ff2 fs2 fc0 sc0 ls0 ws0">Pyannote on short,</div><div class="t m0 x24 h4 ycc ff2 fs2 fc0 sc0 ls0 ws0">clean audio.</div><div class="t m0 x25 h4 ycd ff2 fs2 fc0 sc0 ls0 ws0">Slower execution time,</div><div class="t m0 x25 h4 yce ff2 fs2 fc0 sc0 ls0 ws0">requires more GPU</div><div class="t m0 x25 h4 ycf ff2 fs2 fc0 sc0 ls0 ws0">memory.</div><div class="t m0 x26 h4 yd0 ff2 fs2 fc0 sc0 ls0 ws0">~64s for 5min</div><div class="t m0 x26 h4 yd1 ff2 fs2 fc0 sc0 ls0 ws0">audio on RTX</div><div class="t m0 x26 h4 yd2 ff2 fs2 fc0 sc0 ls0 ws0">3090.</div><div class="t m0 x9 h4 yd3 ff1 fs2 fc0 sc0 ls0 ws0">DIART</div><div class="t m0 x9 h7 yd4 ff1 fs2 fc0 sc0 ls0 ws0">(<span class="ff5">pyannote</span>)</div><div class="t m0 x24 h4 yd5 ff2 fs2 fc0 sc0 ls0 ws0">Extremely low latency</div><div class="t m0 x24 h4 yd6 ff2 fs2 fc0 sc0 ls0 ws0">(~57ms/chunk on</div><div class="t m0 x24 h4 yd7 ff2 fs2 fc0 sc0 ls0 ws0">CPU), scalable.</div><div class="t m0 x25 h4 yd8 ff2 fs2 fc0 sc0 ls0 ws0">May be less accurate</div><div class="t m0 x25 h4 yd9 ff2 fs2 fc0 sc0 ls0 ws0">than fully optimized</div><div class="t m0 x25 h4 yda ff2 fs2 fc0 sc0 ls0 ws0">models on very</div><div class="t m0 x25 h4 ydb ff2 fs2 fc0 sc0 ls0 ws0">challenging data.</div><div class="t m0 x26 h4 ydc ff2 fs2 fc0 sc0 ls0 ws0">Very low</div><div class="t m0 x26 h4 ydd ff2 fs2 fc0 sc0 ls0 ws0">latency (0.057s</div><div class="t m0 x26 h4 yde ff2 fs2 fc0 sc0 ls0 ws0">per chunk).</div><div class="t m0 x27 h5 ydf ff1 fs3 fc1 sc0 ls0 ws0">10</div><div class="t m0 x28 h5 ye0 ff1 fs3 fc1 sc0 ls0 ws0">16</div><div class="t m0 x29 h5 y64 ff1 fs3 fc1 sc0 ls0 ws0">18</div><div class="t m0 x2a h5 ye1 ff1 fs3 fc1 sc0 ls0 ws0">19</div><div class="t m0 x2b h5 ye2 ff1 fs3 fc1 sc0 ls0 ws0">20<span class="_ _5"> </span>50</div><div class="t m0 x2c h5 ye3 ff1 fs3 fc1 sc0 ls0 ws0">12</div><div class="t m0 x2c h5 ye4 ff1 fs3 fc1 sc0 ls0 ws0">12</div><div class="t m0 x2c h5 ye5 ff1 fs3 fc1 sc0 ls0 ws0">10</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,627.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:239.662000px;bottom:762.646000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,372.84,null]'><div class="d m1" style="border-style:none;position:absolute;left:183.715000px;bottom:594.523000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,293.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:499.019000px;bottom:578.911000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,254.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:167.574000px;bottom:473.237000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,214.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:330.543000px;bottom:395.176000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfe" data-dest-detail='[14,"XYZ",77.25,305.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:340.227000px;bottom:395.176000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,548.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:484.349000px;bottom:238.777000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,548.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:484.349000px;bottom:179.190000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,627.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:484.349000px;bottom:111.797000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x9 h4 ye6 ff1 fs2 fc2 sc0 ls0 ws0">System /</div><div class="t m0 x9 h4 ye7 ff1 fs2 fc2 sc0 ls0 ws0">Technique</div><div class="t m0 x24 h4 ye8 ff1 fs2 fc2 sc0 ls0 ws0">Key Strengths<span class="_ _9"> </span>Key Weaknesses<span class="_ _a"> </span>Latency Profile<span class="_ _b"> </span>Source(s)</div><div class="t m0 x9 h4 y76 ff1 fs2 fc0 sc0 ls0 ws0">UIS-RNN-SML</div><div class="t m0 x24 h4 y78 ff2 fs2 fc0 sc0 ls0 ws0">High accuracy, but</div><div class="t m0 x24 h4 ye9 ff2 fs2 fc0 sc0 ls0 ws0">latency increases</div><div class="t m0 x24 h4 yea ff2 fs2 fc0 sc0 ls0 ws0">dramatically with</div><div class="t m0 x24 h4 yeb ff2 fs2 fc0 sc0 ls0 ws0">audio length.</div><div class="t m0 x25 h4 yec ff2 fs2 fc0 sc0 ls0 ws0">Becomes impractical</div><div class="t m0 x25 h4 yed ff2 fs2 fc0 sc0 ls0 ws0">for long recordings</div><div class="t m0 x25 h4 yee ff2 fs2 fc0 sc0 ls0 ws0">(>9s for 9min audio).</div><div class="t m0 x26 h4 yef ff2 fs2 fc0 sc0 ls0 ws0">High latency</div><div class="t m0 x26 h4 yf0 ff2 fs2 fc0 sc0 ls0 ws0">that scales with</div><div class="t m0 x26 h4 yf1 ff2 fs2 fc0 sc0 ls0 ws0">audio duration.</div><div class="t m0 x9 h4 yf2 ff1 fs2 fc0 sc0 ls0 ws0">LLM Post-</div><div class="t m0 x9 h4 yf3 ff1 fs2 fc0 sc0 ls0 ws0">Processing</div><div class="t m0 x24 h4 yf4 ff2 fs2 fc0 sc0 ls0 ws0">ASR-agnostic, can fix</div><div class="t m0 x24 h4 yf5 ff2 fs2 fc0 sc0 ls0 ws0">contextual errors,</div><div class="t m0 x24 h4 yf6 ff2 fs2 fc0 sc0 ls0 ws0">improves accuracy.</div><div class="t m0 x25 h4 yf7 ff2 fs2 fc0 sc0 ls0 ws0">Adds computational</div><div class="t m0 x25 h4 yf8 ff2 fs2 fc0 sc0 ls0 ws0">overhead, requires a</div><div class="t m0 x25 h4 yf9 ff2 fs2 fc0 sc0 ls0 ws0">fine-tuned LLM.</div><div class="t m0 x26 h4 yfa ff2 fs2 fc0 sc0 ls0 ws0">Not specified,</div><div class="t m0 x26 h4 yfb ff2 fs2 fc0 sc0 ls0 ws0">but adds to</div><div class="t m0 x26 h4 yfc ff2 fs2 fc0 sc0 ls0 ws0">overall</div><div class="t m0 x26 h4 yfd ff2 fs2 fc0 sc0 ls0 ws0">processing</div><div class="t m0 x26 h4 yfe ff2 fs2 fc0 sc0 ls0 ws0">time.</div><div class="t m0 x9 h4 yff ff1 fs2 fc0 sc0 ls0 ws0">SelfVC</div><div class="t m0 x9 h4 y100 ff1 fs2 fc0 sc0 ls0 ws0">Framework</div><div class="t m0 x24 h4 y101 ff2 fs2 fc0 sc0 ls0 ws0">No explicit speaker</div><div class="t m0 x24 h4 y102 ff2 fs2 fc0 sc0 ls0 ws0">labels needed, works</div><div class="t m0 x24 h4 y103 ff2 fs2 fc0 sc0 ls0 ws0">on unlabeled data.</div><div class="t m0 x25 h4 y104 ff2 fs2 fc0 sc0 ls0 ws0">Focuses on voice</div><div class="t m0 x25 h4 y105 ff2 fs2 fc0 sc0 ls0 ws0">conversion, not</div><div class="t m0 x25 h4 y106 ff2 fs2 fc0 sc0 ls0 ws0">diarization.</div><div class="t m0 x26 h4 y105 ff2 fs2 fc0 sc0 ls0 ws0">Not applicable.</div><div class="t m0 x1 h4 y107 ff2 fs2 fc0 sc0 ls0 ws0">Ultimately, the choice of speaker diarization technology for Trax v2 depends on the desired user</div><div class="t m0 x1 h4 y108 ff2 fs2 fc0 sc0 ls0 ws0">experience. A pure hobby project might prioritize a quick and easy integration of a library like</div><div class="t m0 x1 h4 y109 ff2 fs2 fc0 sc0 ls0 ws0">Pyannote.audio. A more ambitious v2 could implement a dual-pathway architecture: a fast, low-</div><div class="t m0 x1 h4 y10a ff2 fs2 fc0 sc0 ls0 ws0">latency pathway for real-time transcription and a slower, more accurate pathway for post-processing</div><div class="t m0 x1 h4 y10b ff2 fs2 fc0 sc0 ls0 ws0">that employs advanced techniques like E2E models or LLM-based correction. This would give users</div><div class="t m0 x1 h4 y10c ff2 fs2 fc0 sc0 ls0 ws0">control over the trade-off between immediacy and precision, delivering a truly state-of-the-art</div><div class="t m0 x1 h4 y10d ff2 fs2 fc0 sc0 ls0 ws0">conversational transcription experience.</div><div class="t m0 x1 h3 y10e ff1 fs1 fc0 sc0 ls0 ws0">Architectural Evolution: From Iterative Refinement to Scalable</div><div class="t m0 x1 h3 y10f ff1 fs1 fc0 sc0 ls0 ws0">Cloud-Native Systems</div><div class="t m0 x1 h4 y110 ff2 fs2 fc0 sc0 ls0 ws0">To realize the ambitions of Trax v2—achieving 99.5%+ accuracy, supporting thousands of</div><div class="t m0 x1 h4 y111 ff2 fs2 fc0 sc0 ls0 ws0">concurrent users, and enabling advanced features like multi-pass processing and domain-specific</div><div class="t m0 x1 h4 y112 ff2 fs2 fc0 sc0 ls0 ws0">models—the underlying architecture must evolve significantly from the current production-ready,</div><div class="t m0 x1 h4 y113 ff2 fs2 fc0 sc0 ls0 ws0">protocol-based design. The existing architecture, centered on a batch processor with parallel workers,</div><div class="t m0 x1 h4 y114 ff2 fs2 fc0 sc0 ls0 ws0">excels at deterministic, sequential tasks. However, the new requirements demand a more dynamic,</div><div class="t m0 x1 h4 y115 ff2 fs2 fc0 sc0 ls0 ws0">distributed, and service-oriented structure. This evolution will involve decomposing the monolith</div><div class="t m0 x1 h4 y116 ff2 fs2 fc0 sc0 ls0 ws0">into microservices, adopting a message-driven communication pattern, and embracing cloud-native</div><div class="t m0 x1 h4 y117 ff2 fs2 fc0 sc0 ls0 ws0">principles for scalability and resilience.</div><div class="t m0 x1 h4 y118 ff2 fs2 fc0 sc0 ls0 ws0">The most fundamental architectural change required is the transition from a synchronous, blocking</div><div class="t m0 x1 h4 y119 ff2 fs2 fc0 sc0 ls0 ws0">batch processor to an asynchronous, event-driven workflow. The current system processes files in a</div><div class="t m0 x1 h4 y11a ff2 fs2 fc0 sc0 ls0 ws0">tight loop, which is simple but inefficient for the complex pipelines envisioned for v2. An event-</div><div class="t m0 x1 h4 y11b ff2 fs2 fc0 sc0 ls0 ws0">driven architecture (EDA) is far better suited. In this model, the process begins when a user uploads</div><div class="t m0 x1 h6 y11c ff2 fs2 fc0 sc0 ls0 ws0">a file. The system creates a <span class="ff4">TranscriptionJob</span> event containing metadata (file ID, source</div><div class="t m0 x1 h4 y11d ff2 fs2 fc0 sc0 ls0 ws0">language, requested enhancements) and publishes it to a message broker like Apache Kafka or</div><div class="t m0 x1 h4 y11e ff2 fs2 fc0 sc0 ls0 ws0">RabbitMQ. This immediately returns control to the user, fulfilling the low-latency requirement for</div><div class="t m0 x2c h5 y11f ff1 fs3 fc1 sc0 ls0 ws0">10</div><div class="t m0 x2c h5 y120 ff1 fs3 fc1 sc0 ls0 ws0">20<span class="_ _5"> </span>50</div><div class="t m0 x2c h5 y121 ff1 fs3 fc1 sc0 ls0 ws0">24<span class="_ _5"> </span>26</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,627.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:484.349000px;bottom:704.116000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,214.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:484.349000px;bottom:621.110000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfe" data-dest-detail='[14,"XYZ",77.25,305.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:494.033000px;bottom:621.110000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,785.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:484.349000px;bottom:545.911000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,706.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:494.033000px;bottom:545.911000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf6" class="pf w0 h0" data-page-no="6"><div class="pc pc6 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y2b ff2 fs2 fc0 sc0 ls0 ws0">initiating a job. Multiple, independent worker services then subscribe to this topic. One worker might</div><div class="t m0 x1 h4 y2c ff2 fs2 fc0 sc0 ls0 ws0">handle the initial audio preprocessing, another the primary transcription, a third the speaker</div><div class="t m0 x1 h4 y2d ff2 fs2 fc0 sc0 ls0 ws0">diarization, and so on. Each service performs its task and, upon completion, publishes a new event</div><div class="t m0 x1 h6 ya3 ff2 fs2 fc0 sc0 ls0 ws0">(e.g., <span class="ff4">PrimaryTranscriptionComplete</span>) with its output, triggering the next service in the</div><div class="t m0 x1 h4 y122 ff2 fs2 fc0 sc0 ls0 ws0">chain. This decouples the processing stages, allowing them to scale independently and fail without</div><div class="t m0 x1 h4 y123 ff2 fs2 fc0 sc0 ls0 ws0">bringing down the entire system. It also naturally enables the multi-pass and multi-model processing</div><div class="t m0 x1 h4 y124 ff2 fs2 fc0 sc0 ls0 ws0">flows discussed previously, where the output of one model becomes the input for another.</div><div class="t m0 x1 h4 ya7 ff2 fs2 fc0 sc0 ls0 ws0">This EDA forms the basis for a microservice architecture. Instead of a single, large application, Trax</div><div class="t m0 x1 h4 y125 ff2 fs2 fc0 sc0 ls0 ws0">v2 would consist of a collection of small, focused services: 1. <span class="ff1">API Gateway</span>: The single entry point</div><div class="t m0 x1 h4 y126 ff2 fs2 fc0 sc0 ls0 ws0">for all client requests. It authenticates users, routes requests to the appropriate backend service, and</div><div class="t m0 x1 h4 y127 ff2 fs2 fc0 sc0 ls0 ws0">aggregates responses. 2. <span class="ff1">Transcription Service</span>: Manages the lifecycle of transcription jobs, interacting</div><div class="t m0 x1 h4 y128 ff2 fs2 fc0 sc0 ls0 ws0">with the message broker to trigger and coordinate workflows. 3. <span class="ff1">Worker Services</span>: Specialized</div><div class="t m0 x1 h6 y129 ff2 fs2 fc0 sc0 ls0 ws0">services for different processing tasks (e.g., <span class="ff4">WhisperWorker</span>, <span class="ff4">DeepSeekEnhancer</span>, </div><div class="t m0 x1 h6 y12a ff4 fs2 fc0 sc0 ls0 ws0">DiarizationWorker<span class="ff2">). These can be scaled independently based on their computational</span></div><div class="t m0 x1 h4 y12b ff2 fs2 fc0 sc0 ls0 ws0">intensity. 4. <span class="ff1">Model Management Service</span>: Handles the loading, caching, and versioning of machine</div><div class="t m0 x1 h4 y12c ff2 fs2 fc0 sc0 ls0 ws0">learning models. This is crucial for efficiently swapping in different PEFT-adapted models for</div><div class="t m0 x1 h4 y12d ff2 fs2 fc0 sc0 ls0 ws0">various domains. 5. <span class="ff1">Storage Service</span>: Manages access to the PostgreSQL database and object storage</div><div class="t m0 x1 h4 y12e ff2 fs2 fc0 sc0 ls0 ws0">for audio files and processed transcripts. 6. <span class="ff1">Metrics & Logging Service</span>: Collects telemetry data to</div><div class="t m0 x1 h4 y12f ff2 fs2 fc0 sc0 ls0 ws0">monitor system health, performance, and error rates.</div><div class="t m0 x1 h4 y130 ff2 fs2 fc0 sc0 ls0 ws0">This modular design offers immense benefits. It allows teams to develop and deploy services</div><div class="t m0 x1 h4 y131 ff2 fs2 fc0 sc0 ls0 ws0">independently, facilitates experimentation with new models, and improves maintainability. For</div><div class="t m0 x1 h4 y132 ff2 fs2 fc0 sc0 ls0 ws0">example, if a new, more accurate diarization model is released, only the Diarization Worker needs to</div><div class="t m0 x1 h4 y133 ff2 fs2 fc0 sc0 ls0 ws0">be updated and redeployed, without touching the rest of the system.</div><div class="t m0 x1 h4 y134 ff2 fs2 fc0 sc0 ls0 ws0">Scalability is a key success metric, targeting 1000+ concurrent transcriptions. This is best achieved</div><div class="t m0 x1 h4 y135 ff2 fs2 fc0 sc0 ls0 ws0">through containerization and orchestration. Docker should be used to package each service, ensuring</div><div class="t m0 x1 h4 y136 ff2 fs2 fc0 sc0 ls0 ws0">consistency across development and production environments. Kubernetes would then serve as the</div><div class="t m0 x1 h4 y137 ff2 fs2 fc0 sc0 ls0 ws0">orchestrator, managing the deployment, scaling, and operation of these containers. Kubernetes'</div><div class="t m0 x1 h4 y138 ff2 fs2 fc0 sc0 ls0 ws0">Horizontal Pod Autoscaler (HPA) can automatically increase the number of replicas for a service like</div><div class="t m0 x1 h6 y139 ff2 fs2 fc0 sc0 ls0 ws0">the <span class="ff4">WhisperWorker</span> when CPU utilization or the length of the message queue exceeds a</div><div class="t m0 x1 h4 y13a ff2 fs2 fc0 sc0 ls0 ws0">threshold, and decrease them when load is low. This ensures resources are used efficiently. To meet</div><div class="t m0 x1 h4 y13b ff2 fs2 fc0 sc0 ls0 ws0">the <1GB memory per worker target, careful selection of container base images and optimization of</div><div class="t m0 x1 h6 y13c ff2 fs2 fc0 sc0 ls0 ws0">the Python environment (e.g., using <span class="ff4">uv</span> as planned) is critical. Additionally, using smaller, more</div><div class="t m0 x1 h4 y13d ff2 fs2 fc0 sc0 ls0 ws0">efficient models, such as quantized versions of Whisper, can further reduce memory footprint <span class="_ _0"> </span>.</div><div class="t m0 x1 h4 y13e ff2 fs2 fc0 sc0 ls0 ws0">Finally, the architecture must incorporate mechanisms for cost optimization and reliability. Caching</div><div class="t m0 x1 h4 y13f ff2 fs2 fc0 sc0 ls0 ws0">is a powerful tool. Transcripts of frequently used content or common phrases can be cached in a</div><div class="t m0 x1 h4 y140 ff2 fs2 fc0 sc0 ls0 ws0">system like Redis to avoid redundant processing and reduce API costs. Intelligent caching of</div><div class="t m0 x1 h4 y141 ff2 fs2 fc0 sc0 ls0 ws0">intermediate results from multi-pass processing can also yield significant performance gains. For</div><div class="t m0 x1 h4 y142 ff2 fs2 fc0 sc0 ls0 ws0">reliability, the system must be designed for failure. This includes implementing idempotency keys for</div><div class="t m0 x1 h4 y143 ff2 fs2 fc0 sc0 ls0 ws0">API requests to prevent duplicate processing, using dead-letter queues in the message broker to</div><div class="t m0 x1 h4 y144 ff2 fs2 fc0 sc0 ls0 ws0">handle failed messages for later inspection, and ensuring all services are stateless so they can be</div><div class="t m0 x1 h4 y145 ff2 fs2 fc0 sc0 ls0 ws0">restarted or replaced without losing data. With a cloud-native architecture built on these principles,</div><div class="t m0 x1 h4 y146 ff2 fs2 fc0 sc0 ls0 ws0">Trax v2 can confidently scale to meet demanding workloads while remaining performant, cost-</div><div class="t m0 x1 h4 y147 ff2 fs2 fc0 sc0 ls0 ws0">effective, and resilient.</div><div class="t m0 x2d h5 y148 ff1 fs3 fc1 sc0 ls0 ws0">17</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,333.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:502.191000px;bottom:242.665000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf7" class="pf w0 h0" data-page-no="7"><div class="pc pc7 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h3 y149 ff1 fs1 fc0 sc0 ls0 ws0">Optimizing for Scale and Speed: Strategies for Concurrent</div><div class="t m0 x1 h3 y14a ff1 fs1 fc0 sc0 ls0 ws0">Transcription and Resource Efficiency</div><div class="t m0 x1 h4 y14b ff2 fs2 fc0 sc0 ls0 ws0">Achieving the ambitious targets of 1000+ concurrent transcriptions and <$0.005 per transcript</div><div class="t m0 x1 h4 y14c ff2 fs2 fc0 sc0 ls0 ws0">requires a multi-faceted approach to optimization, focusing on workload distribution, resource</div><div class="t m0 x1 h4 y14d ff2 fs2 fc0 sc0 ls0 ws0">management, and computational efficiency. The foundation of this effort lies in moving beyond the</div><div class="t m0 x1 h4 y14e ff2 fs2 fc0 sc0 ls0 ws0">current single-machine, multi-worker setup to a distributed, cloud-native architecture capable of</div><div class="t m0 x1 h4 y14f ff2 fs2 fc0 sc0 ls0 ws0">horizontal scaling. This involves leveraging containerization, message queues, and efficient model</div><div class="t m0 x1 h4 y150 ff2 fs2 fc0 sc0 ls0 ws0">deployment strategies to maximize throughput and minimize operational costs.</div><div class="t m0 x1 h4 y151 ff2 fs2 fc0 sc0 ls0 ws0">The first step toward high concurrency is to eliminate bottlenecks in the processing pipeline. As</div><div class="t m0 x1 h4 y152 ff2 fs2 fc0 sc0 ls0 ws0">previously discussed, transitioning to an event-driven architecture with a message broker is central.</div><div class="t m0 x1 h4 y153 ff2 fs2 fc0 sc0 ls0 ws0">This decouples the frontend from the backend processing, allowing the system to accept thousands</div><div class="t m0 x1 h4 y154 ff2 fs2 fc0 sc0 ls0 ws0">of new transcription jobs instantly without being blocked by the processing capacity. The message</div><div class="t m0 x1 h4 y155 ff2 fs2 fc0 sc0 ls0 ws0">broker acts as a buffer, smoothing out spikes in demand. The workers that consume from this queue</div><div class="t m0 x1 h4 y156 ff2 fs2 fc0 sc0 ls0 ws0">can then be deployed as a scalable Kubernetes deployment. When the volume of jobs increases,</div><div class="t m0 x1 h4 y157 ff2 fs2 fc0 sc0 ls0 ws0">Kubernetes can automatically spin up more worker pods to consume messages from the queue in</div><div class="t m0 x1 h4 y158 ff2 fs2 fc0 sc0 ls0 ws0">parallel, distributing the load across multiple machines or cores. This horizontal scaling is the most</div><div class="t m0 x1 h4 y159 ff2 fs2 fc0 sc0 ls0 ws0">direct way to handle thousands of concurrent users.</div><div class="t m0 x1 h4 y15a ff2 fs2 fc0 sc0 ls0 ws0">Efficient resource management within each worker is equally critical. The goal is to keep the memory</div><div class="t m0 x1 h4 y15b ff2 fs2 fc0 sc0 ls0 ws0">usage below 1GB per worker. This can be achieved through several techniques. First, selecting leaner</div><div class="t m0 x1 h6 y15c ff2 fs2 fc0 sc0 ls0 ws0">base images for Docker containers (e.g., <span class="ff4">python:slim</span> instead of a full OS image) and carefully</div><div class="t m0 x1 h4 y15d ff2 fs2 fc0 sc0 ls0 ws0">managing dependencies is important. Second, and most critically, is the use of Post-Training</div><div class="t m0 x1 h4 y15e ff2 fs2 fc0 sc0 ls0 ws0">Quantization (PTQ). PTQ is a technique that converts the floating-point weights of a trained model</div><div class="t m0 x1 h4 y15f ff2 fs2 fc0 sc0 ls0 ws0">into lower-bitwidth integers (e.g., 8-bit or 4-bit) without retraining, significantly reducing the model's</div><div class="t m0 x1 h4 y160 ff2 fs2 fc0 sc0 ls0 ws0">memory footprint and accelerating computation. Research has shown that w8-a8 quantization (8-bit</div><div class="t m0 x1 h4 y161 ff2 fs2 fc0 sc0 ls0 ws0">weights, 8-bit activations) generally preserves accuracy, while w4-a8 can cause significant degradation</div><div class="t m0 x1 h4 y162 ff2 fs2 fc0 sc0 ls0 ws0">in smaller models but is surprisingly robust in larger ones like Whisper Small <span class="_ _0"> </span>. Methods like GPTQ</div><div class="t m0 x1 h4 y163 ff2 fs2 fc0 sc0 ls0 ws0">and SpQR have demonstrated strong robustness across configurations <span class="_ _0"> </span>. By applying PTQ, Trax</div><div class="t m0 x1 h4 y164 ff2 fs2 fc0 sc0 ls0 ws0">can deploy multiple instances of the Whisper model on a single GPU, drastically increasing batch</div><div class="t m0 x1 h4 y165 ff2 fs2 fc0 sc0 ls0 ws0">processing capacity and reducing the overall hardware cost per transcription.</div><div class="t m0 x1 h4 y166 ff2 fs2 fc0 sc0 ls0 ws0">Further computational efficiency can be gained by optimizing the processing logic itself. For multi-</div><div class="t m0 x1 h4 y167 ff2 fs2 fc0 sc0 ls0 ws0">pass systems, as explored in the accuracy section, one study successfully reduced the frame rate of</div><div class="t m0 x1 h4 y168 ff2 fs2 fc0 sc0 ls0 ws0">the second pass by 50% without affecting final accuracy, leading to a 20% reduction in Real-Time</div><div class="t m0 x1 h4 y169 ff2 fs2 fc0 sc0 ls0 ws0">Factor (RTF) and 13% power savings <span class="_ _0"> </span>. This principle can be applied to Trax's v2 processing</div><div class="t m0 x1 h4 y16a ff2 fs2 fc0 sc0 ls0 ws0">pipeline, where the initial, faster pass can be executed with a higher frame rate, and a more</div><div class="t m0 x1 h4 y16b ff2 fs2 fc0 sc0 ls0 ws0">computationally intensive second pass can run at a lower frame rate on a subset of the audio. This</div><div class="t m0 x1 h4 y16c ff2 fs2 fc0 sc0 ls0 ws0">targeted optimization focuses compute resources where they are most needed, improving overall</div><div class="t m0 x1 h4 y16d ff2 fs2 fc0 sc0 ls0 ws0">efficiency.</div><div class="t m0 x1 h4 y16e ff2 fs2 fc0 sc0 ls0 ws0">Cost optimization is intrinsically linked to resource efficiency. The target of <$0.005 per transcript is</div><div class="t m0 x1 h4 y16f ff2 fs2 fc0 sc0 ls0 ws0">aggressive and will only be met by minimizing every component of the cost equation: compute,</div><div class="t m0 x1 h4 y170 ff2 fs2 fc0 sc0 ls0 ws0">storage, and data transfer. Beyond model quantization and efficient pipelines, strategic use of spot</div><div class="t m0 x1 h4 y171 ff2 fs2 fc0 sc0 ls0 ws0">instances or preemptible VMs in the cloud can dramatically reduce compute costs, provided the</div><div class="t m0 x2e h5 y172 ff1 fs3 fc1 sc0 ls0 ws0">17</div><div class="t m0 x2f h5 y173 ff1 fs3 fc1 sc0 ls0 ws0">17</div><div class="t m0 x30 h5 y174 ff1 fs3 fc1 sc0 ls0 ws0">22</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,333.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:420.890000px;bottom:333.400000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,333.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:393.419000px;bottom:317.788000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,135.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:241.214000px;bottom:212.114000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf8" class="pf w0 h0" data-page-no="8"><div class="pc pc8 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y2b ff2 fs2 fc0 sc0 ls0 ws0">system is designed to gracefully handle interruptions. Storage costs can be managed by using tiered</div><div class="t m0 x1 h4 y2c ff2 fs2 fc0 sc0 ls0 ws0">storage, where raw audio files are stored in cheaper archival storage and only moved to high-</div><div class="t m0 x1 h4 y2d ff2 fs2 fc0 sc0 ls0 ws0">performance storage when actively being processed. Data transfer costs, particularly if using a cloud</div><div class="t m0 x1 h4 ya3 ff2 fs2 fc0 sc0 ls0 ws0">provider, can be minimized by running the API gateway, message broker, and worker services within</div><div class="t m0 x1 h4 ya4 ff2 fs2 fc0 sc0 ls0 ws0">the same availability zone or region. Finally, intelligent caching, as mentioned earlier, can reduce the</div><div class="t m0 x1 h4 ya5 ff2 fs2 fc0 sc0 ls0 ws0">need for reprocessing identical content, saving both time and compute cycles.</div><div class="t m0 x1 h4 ya6 ff2 fs2 fc0 sc0 ls0 ws0">The following table summarizes key optimization strategies and their potential impact:</div><div class="t m0 x9 h4 y175 ff1 fs2 fc2 sc0 ls0 ws0">Optimization</div><div class="t m0 x9 h4 y176 ff1 fs2 fc2 sc0 ls0 ws0">Strategy</div><div class="t m0 x31 h4 y177 ff1 fs2 fc2 sc0 ls0 ws0">Description<span class="_ _c"> </span>Potential Impact<span class="_ _d"> </span>Source(s)</div><div class="t m0 x9 h4 y178 ff1 fs2 fc0 sc0 ls0 ws0">Event-Driven</div><div class="t m0 x9 h4 y179 ff1 fs2 fc0 sc0 ls0 ws0">Architecture</div><div class="t m0 x31 h4 y17a ff2 fs2 fc0 sc0 ls0 ws0">Use a message broker (e.g.,</div><div class="t m0 x31 h4 y17b ff2 fs2 fc0 sc0 ls0 ws0">Kafka) to decouple job</div><div class="t m0 x31 h4 y17c ff2 fs2 fc0 sc0 ls0 ws0">submission from</div><div class="t m0 x31 h4 y17d ff2 fs2 fc0 sc0 ls0 ws0">processing.</div><div class="t m0 x32 h4 y17e ff2 fs2 fc0 sc0 ls0 ws0">Enables thousands of</div><div class="t m0 x32 h4 y17f ff2 fs2 fc0 sc0 ls0 ws0">concurrent job submissions</div><div class="t m0 x32 h4 y180 ff2 fs2 fc0 sc0 ls0 ws0">and independent scaling of</div><div class="t m0 x32 h4 y181 ff2 fs2 fc0 sc0 ls0 ws0">worker services.</div><div class="t m0 x33 h4 y182 ff2 fs2 fc0 sc0 ls0 ws0">Analytical</div><div class="t m0 x33 h4 y183 ff2 fs2 fc0 sc0 ls0 ws0">Reasoning</div><div class="t m0 x9 h4 y184 ff1 fs2 fc0 sc0 ls0 ws0">Horizontal Scaling</div><div class="t m0 x31 h4 y185 ff2 fs2 fc0 sc0 ls0 ws0">Deploy worker services as</div><div class="t m0 x31 h4 y186 ff2 fs2 fc0 sc0 ls0 ws0">scalable Kubernetes</div><div class="t m0 x31 h4 y187 ff2 fs2 fc0 sc0 ls0 ws0">deployments.</div><div class="t m0 x32 h4 y188 ff2 fs2 fc0 sc0 ls0 ws0">Directly supports handling</div><div class="t m0 x32 h4 y189 ff2 fs2 fc0 sc0 ls0 ws0">thousands of concurrent</div><div class="t m0 x32 h4 y18a ff2 fs2 fc0 sc0 ls0 ws0">transcription tasks.</div><div class="t m0 x9 h4 y18b ff1 fs2 fc0 sc0 ls0 ws0">Post-Training</div><div class="t m0 x9 h4 y18c ff1 fs2 fc0 sc0 ls0 ws0">Quantization</div><div class="t m0 x9 h4 y18d ff1 fs2 fc0 sc0 ls0 ws0">(PTQ)</div><div class="t m0 x31 h4 y18e ff2 fs2 fc0 sc0 ls0 ws0">Reduce model size by</div><div class="t m0 x31 h4 y18f ff2 fs2 fc0 sc0 ls0 ws0">converting weights to</div><div class="t m0 x31 h4 y190 ff2 fs2 fc0 sc0 ls0 ws0">lower-bitwidth integers</div><div class="t m0 x31 h4 y191 ff2 fs2 fc0 sc0 ls0 ws0">(e.g., w4-a8).</div><div class="t m0 x32 h4 y192 ff2 fs2 fc0 sc0 ls0 ws0">Reduces memory usage,</div><div class="t m0 x32 h4 y193 ff2 fs2 fc0 sc0 ls0 ws0">accelerates inference, and</div><div class="t m0 x32 h4 y194 ff2 fs2 fc0 sc0 ls0 ws0">increases batch size, lowering</div><div class="t m0 x32 h4 y195 ff2 fs2 fc0 sc0 ls0 ws0">cost per transcript.</div><div class="t m0 x9 h4 y196 ff1 fs2 fc0 sc0 ls0 ws0">Efficient Multi-</div><div class="t m0 x9 h4 y197 ff1 fs2 fc0 sc0 ls0 ws0">Pass Pipelines</div><div class="t m0 x31 h4 y198 ff2 fs2 fc0 sc0 ls0 ws0">Reduce computational load</div><div class="t m0 x31 h4 y199 ff2 fs2 fc0 sc0 ls0 ws0">in later passes (e.g., by</div><div class="t m0 x31 h4 y19a ff2 fs2 fc0 sc0 ls0 ws0">lowering frame rate).</div><div class="t m0 x32 h4 y19b ff2 fs2 fc0 sc0 ls0 ws0">Decreases overall latency and</div><div class="t m0 x32 h4 y19c ff2 fs2 fc0 sc0 ls0 ws0">computational cost without</div><div class="t m0 x32 h4 y19d ff2 fs2 fc0 sc0 ls0 ws0">sacrificing accuracy.</div><div class="t m0 x9 h4 y19e ff1 fs2 fc0 sc0 ls0 ws0">Cloud-Native Cost</div><div class="t m0 x9 h4 y19f ff1 fs2 fc0 sc0 ls0 ws0">Management</div><div class="t m0 x31 h4 y1a0 ff2 fs2 fc0 sc0 ls0 ws0">Utilize spot/preemptible</div><div class="t m0 x31 h4 y1a1 ff2 fs2 fc0 sc0 ls0 ws0">instances, regional</div><div class="t m0 x31 h4 y1a2 ff2 fs2 fc0 sc0 ls0 ws0">deployments, and tiered</div><div class="t m0 x31 h4 y1a3 ff2 fs2 fc0 sc0 ls0 ws0">storage.</div><div class="t m0 x32 h4 y1a4 ff2 fs2 fc0 sc0 ls0 ws0">Drastically reduces compute</div><div class="t m0 x32 h4 y1a5 ff2 fs2 fc0 sc0 ls0 ws0">and data transfer costs,</div><div class="t m0 x32 h4 y1a6 ff2 fs2 fc0 sc0 ls0 ws0">meeting aggressive pricing</div><div class="t m0 x32 h4 y1a7 ff2 fs2 fc0 sc0 ls0 ws0">targets.</div><div class="t m0 x9 h4 y1a8 ff1 fs2 fc0 sc0 ls0 ws0">Parameter-</div><div class="t m0 x9 h4 y1a9 ff1 fs2 fc0 sc0 ls0 ws0">Efficient Fine-</div><div class="t m0 x9 h4 y1aa ff1 fs2 fc0 sc0 ls0 ws0">Tuning (PEFT)</div><div class="t m0 x31 h4 y1ab ff2 fs2 fc0 sc0 ls0 ws0">Use LoRA or similar</div><div class="t m0 x31 h4 y1ac ff2 fs2 fc0 sc0 ls0 ws0">methods for domain</div><div class="t m0 x31 h4 y1ad ff2 fs2 fc0 sc0 ls0 ws0">adaptation.</div><div class="t m0 x32 h4 y1ae ff2 fs2 fc0 sc0 ls0 ws0">Avoids deploying large, full-</div><div class="t m0 x32 h4 y1af ff2 fs2 fc0 sc0 ls0 ws0">scale fine-tuned models, saving</div><div class="t m0 x32 h4 y1b0 ff2 fs2 fc0 sc0 ls0 ws0">memory and storage.</div><div class="t m0 x1 h4 y1b1 ff2 fs2 fc0 sc0 ls0 ws0">By systematically applying these strategies, Trax v2 can build a highly performant, scalable, and cost-</div><div class="t m0 x1 h4 y1b2 ff2 fs2 fc0 sc0 ls0 ws0">effective platform. The architectural shift to a distributed, event-driven system provides the necessary</div><div class="t m0 x1 h4 y1b3 ff2 fs2 fc0 sc0 ls0 ws0">foundation for concurrency. Within that system, optimizations in model quantization, pipeline</div><div class="t m0 x1 h4 y1b4 ff2 fs2 fc0 sc0 ls0 ws0">design, and cloud resource management will ensure that the performance and cost targets are not just</div><div class="t m0 x1 h4 y1b5 ff2 fs2 fc0 sc0 ls0 ws0">met, but exceeded.</div><div class="t m0 x34 h5 y1b6 ff1 fs3 fc1 sc0 ls0 ws0">22</div><div class="t m0 x34 h5 y1b7 ff1 fs3 fc1 sc0 ls0 ws0">17</div><div class="t m0 x34 h5 y1b8 ff1 fs3 fc1 sc0 ls0 ws0">22</div><div class="t m0 x35 h5 y1b9 ff1 fs3 fc1 sc0 ls0 ws0">5</div><div class="t m0 x34 h5 y1ba ff1 fs3 fc1 sc0 ls0 ws0">28<span class="_ _5"> </span>31</div><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,135.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:469.593000px;bottom:503.436000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,333.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:469.593000px;bottom:436.043000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfc" data-dest-detail='[12,"XYZ",77.25,135.24,null]'><div class="d m1" style="border-style:none;position:absolute;left:469.593000px;bottom:368.650000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,137.526,null]'><div class="d m1" style="border-style:none;position:absolute;left:469.593000px;bottom:301.257000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,610.44,null]'><div class="d m1" style="border-style:none;position:absolute;left:469.593000px;bottom:233.864000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,491.64,null]'><div class="d m1" style="border-style:none;position:absolute;left:479.277000px;bottom:233.864000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pf9" class="pf w0 h0" data-page-no="9"><div class="pc pc9 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h3 y149 ff1 fs1 fc0 sc0 ls0 ws0">The User Experience Imperative: Designing a Modern Interface</div><div class="t m0 x1 h3 y14a ff1 fs1 fc0 sc0 ls0 ws0">and Workflow</div><div class="t m0 x1 h4 y14b ff2 fs2 fc0 sc0 ls0 ws0">While backend performance and feature set are crucial, the ultimate success of Trax v2 hinges on a</div><div class="t m0 x1 h4 y14c ff2 fs2 fc0 sc0 ls0 ws0">seamless and intuitive user experience. For a hobby project aimed at becoming a serious tool, the</div><div class="t m0 x1 h4 y14d ff2 fs2 fc0 sc0 ls0 ws0">user interface must evolve from a functional but dated Command Line Interface (CLI) to a modern,</div><div class="t m0 x1 h4 y14e ff2 fs2 fc0 sc0 ls0 ws0">web-based platform that simplifies complex workflows and provides powerful, accessible tools for</div><div class="t m0 x1 h4 y14f ff2 fs2 fc0 sc0 ls0 ws0">reviewing and editing transcripts. The focus should be on streamlining the path from audio upload to</div><div class="t m0 x1 h4 y150 ff2 fs2 fc0 sc0 ls0 ws0">final, usable text, catering to the needs of researchers, journalists, and other professionals who rely</div><div class="t m0 x1 h4 y1bb ff2 fs2 fc0 sc0 ls0 ws0">on accurate transcription.</div><div class="t m0 x1 h4 y1bc ff2 fs2 fc0 sc0 ls0 ws0">The immediate priority is the development of a comprehensive web interface. This interface should</div><div class="t m0 x1 h4 y153 ff2 fs2 fc0 sc0 ls0 ws0">be built using a modern front-end framework like React or Vue.js, ensuring a responsive and mobile-</div><div class="t m0 x1 h4 y1bd ff2 fs2 fc0 sc0 ls0 ws0">friendly design <span class="_ _0"> </span>. The core workflow should be clear and logical. Upon visiting the site, a user</div><div class="t m0 x1 h4 y1be ff2 fs2 fc0 sc0 ls0 ws0">should see a prominent "Upload Audio" button. After uploading a file, the system should present a</div><div class="t m0 x1 h4 y1bf ff2 fs2 fc0 sc0 ls0 ws0">clean dashboard displaying the status of the transcription job. Once the job is complete, the interface</div><div class="t m0 x1 h4 y1c0 ff2 fs2 fc0 sc0 ls0 ws0">should display the transcript in a readable format. Crucially, this is not just a static display. The</div><div class="t m0 x1 h4 y1c1 ff2 fs2 fc0 sc0 ls0 ws0">transcript should be interactive, allowing users to click on any word to hear the corresponding audio</div><div class="t m0 x1 h4 y1c2 ff2 fs2 fc0 sc0 ls0 ws0">snippet, a feature that greatly aids verification and correction.</div><div class="t m0 x1 h4 y1c3 ff2 fs2 fc0 sc0 ls0 ws0">One of the most valuable additions to enhance the user experience is real-time collaboration. While</div><div class="t m0 x1 h4 y1c4 ff2 fs2 fc0 sc0 ls0 ws0">the user indicated no critical integrations, the ability for multiple users to review, edit, and comment</div><div class="t m0 x1 h4 y1c5 ff2 fs2 fc0 sc0 ls0 ws0">on a single transcript simultaneously is a powerful productivity tool. This feature, however, presents a</div><div class="t m0 x1 h4 y1c6 ff2 fs2 fc0 sc0 ls0 ws0">significant engineering challenge, especially regarding performance. To support this, Trax v2 must be</div><div class="t m0 x1 h4 y1c7 ff2 fs2 fc0 sc0 ls0 ws0">architected with real-time capabilities from the ground up. This likely involves using WebSockets or a</div><div class="t m0 x1 h4 y1c8 ff2 fs2 fc0 sc0 ls0 ws0">similar persistent connection technology to facilitate low-latency updates. The system must be</div><div class="t m0 x1 h4 y1c9 ff2 fs2 fc0 sc0 ls0 ws0">designed to handle concurrent edits efficiently, perhaps using Operational Transformation (OT) or</div><div class="t m0 x1 h4 y1ca ff2 fs2 fc0 sc0 ls0 ws0">Conflict-Free Replicated Data Types (CRDTs) to merge changes from multiple users without</div><div class="t m0 x1 h4 y1cb ff2 fs2 fc0 sc0 ls0 ws0">conflict. The target of <500ms latency for updates is achievable but will require a highly optimized</div><div class="t m0 x1 h4 y1cc ff2 fs2 fc0 sc0 ls0 ws0">backend and a well-designed front-end architecture <span class="_ _0"> </span>.</div><div class="t m0 x1 h4 y1cd ff2 fs2 fc0 sc0 ls0 ws0">The interface should also provide advanced export options and a flexible workflow. Users should be</div><div class="t m0 x1 h4 y1ce ff2 fs2 fc0 sc0 ls0 ws0">able to download transcripts in a variety of formats, including SRT for subtitles, DOCX for editable</div><div class="t m0 x1 h4 y1cf ff2 fs2 fc0 sc0 ls0 ws0">documents, and JSON for programmatic access. Integration with popular note-taking platforms like</div><div class="t m0 x1 h4 y1d0 ff2 fs2 fc0 sc0 ls0 ws0">Obsidian or Notion, though not a "critical" partner, would be a significant value-add and could be</div><div class="t m0 x1 h4 y1d1 ff2 fs2 fc0 sc0 ls0 ws0">implemented via a browser extension or bookmarklet that allows users to send highlighted text</div><div class="t m0 x1 h4 y1d2 ff2 fs2 fc0 sc0 ls0 ws0">directly to their preferred tool. The workflow should be streamlined, minimizing clicks and cognitive</div><div class="t m0 x1 h4 y1d3 ff2 fs2 fc0 sc0 ls0 ws0">load. For example, after correcting an error, the user should be able to immediately request a new</div><div class="t m0 x1 h4 y1d4 ff2 fs2 fc0 sc0 ls0 ws0">translation of a specific sentence or paragraph without having to re-run the entire transcription job.</div><div class="t m0 x1 h4 y1d5 ff2 fs2 fc0 sc0 ls0 ws0">Finally, the design must be tailored to different user types. A researcher may need to tag specific</div><div class="t m0 x1 h4 y1d6 ff2 fs2 fc0 sc0 ls0 ws0">sections of the transcript with metadata, while a journalist may prioritize quick searching and</div><div class="t m0 x1 h4 y1d7 ff2 fs2 fc0 sc0 ls0 ws0">quoting. The interface should be adaptable, perhaps through user profiles or customizable</div><div class="t m0 x1 h4 y1d8 ff2 fs2 fc0 sc0 ls0 ws0">dashboards, to accommodate these varying needs. The goal is to create an interface that feels both</div><div class="t m0 x1 h4 y1d9 ff2 fs2 fc0 sc0 ls0 ws0">powerful and intuitive, empowering users to leverage the advanced capabilities of the Trax engine</div><div class="t m0 x1 h4 y1da ff2 fs2 fc0 sc0 ls0 ws0">without being overwhelmed by its complexity. By investing in a modern, collaborative, and user-</div><div class="t m0 x36 h5 y1db ff1 fs3 fc1 sc0 ls0 ws0">25</div><div class="t m0 x37 h5 y173 ff1 fs3 fc1 sc0 ls0 ws0">3</div><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",77.25,746.04,null]'><div class="d m1" style="border-style:none;position:absolute;left:134.577000px;bottom:563.973000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",77.25,216.726,null]'><div class="d m1" style="border-style:none;position:absolute;left:304.074000px;bottom:317.788000px;width:7.263000px;height:7.263000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pfa" class="pf w0 h0" data-page-no="a"><div class="pc pca w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y2b ff2 fs2 fc0 sc0 ls0 ws0">centric web interface, Trax v2 can transform from a powerful engine into an indispensable tool for</div><div class="t m0 x1 h4 y2c ff2 fs2 fc0 sc0 ls0 ws0">anyone working with spoken language.</div><div class="t m0 x1 h3 y1dc ff1 fs1 fc0 sc0 ls0 ws0">Synthesizing the Future: A Roadmap for Trax v2 Implementation</div><div class="t m0 x1 h3 y1dd ff1 fs1 fc0 sc0 ls0 ws0">and Success</div><div class="t m0 x1 h4 y1de ff2 fs2 fc0 sc0 ls0 ws0">The journey from Trax v1.0.0 to a next-generation transcription platform is an exciting opportunity</div><div class="t m0 x1 h4 y1df ff2 fs2 fc0 sc0 ls0 ws0">to build a system that is not only faster and more accurate but also architecturally robust and user-</div><div class="t m0 x1 h4 y1e0 ff2 fs2 fc0 sc0 ls0 ws0">centric. The research clearly indicates that the path forward involves a deliberate and phased</div><div class="t m0 x1 h4 y1e1 ff2 fs2 fc0 sc0 ls0 ws0">implementation, starting with foundational architectural upgrades before layering on advanced</div><div class="t m0 x1 h4 y1e2 ff2 fs2 fc0 sc0 ls0 ws0">features. This synthesis outlines a practical roadmap to guide the development of Trax v2, ensuring</div><div class="t m0 x1 h4 y1e3 ff2 fs2 fc0 sc0 ls0 ws0">that the project remains focused, manageable, and aligned with the user's goals of performance and</div><div class="t m0 x1 h4 y1e4 ff2 fs2 fc0 sc0 ls0 ws0">ambition.</div><div class="t m0 x1 h4 y1e5 ff1 fs2 fc0 sc0 ls0 ws0">Phase 1: Foundation and Core Pipeline (4-6 Weeks)</div><div class="t m0 x1 h4 y1e6 ff2 fs2 fc0 sc0 ls0 ws0">The initial phase must establish the groundwork for all future enhancements. The primary objective</div><div class="t m0 x1 h4 y1e7 ff2 fs2 fc0 sc0 ls0 ws0">is to overhaul the current architecture. 1. <span class="ff1">Architectural Decomposition:</span> Begin by breaking down the</div><div class="t m0 x1 h4 y1e8 ff2 fs2 fc0 sc0 ls0 ws0">monolithic CLI and batch processor into a suite of microservices. Develop the core services: an API</div><div class="t m0 x1 h4 y1e9 ff2 fs2 fc0 sc0 ls0 ws0">Gateway, a Transcription Service, and a set of generic Worker Services. Integrate a message broker</div><div class="t m0 x1 h4 y1ea ff2 fs2 fc0 sc0 ls0 ws0">(e.g., Kafka) to enable the event-driven workflow. 2. <span class="ff1">Implement Multi-Pass Engine:</span> Build the core</div><div class="t m0 x1 h4 y1eb ff2 fs2 fc0 sc0 ls0 ws0">engine for multi-pass processing. This involves designing a workflow definition language or</div><div class="t m0 x1 h4 y1ec ff2 fs2 fc0 sc0 ls0 ws0">configuration system that allows for the chaining of different models (e.g., a fast Whisper variant</div><div class="t m0 x1 h4 y1ed ff2 fs2 fc0 sc0 ls0 ws0">followed by a DeepSeek enhancement pass). This phase should focus on the orchestration logic</div><div class="t m0 x1 h4 y1ee ff2 fs2 fc0 sc0 ls0 ws0">rather than building entirely new models. 3. <span class="ff1">Establish Baseline Accuracy:</span> Implement the current</div><div class="t m0 x1 h4 y1ef ff2 fs2 fc0 sc0 ls0 ws0">best-in-class single-pass accuracy pipeline using the existing Whisper and DeepSeek models. This</div><div class="t m0 x1 h4 y1f0 ff2 fs2 fc0 sc0 ls0 ws0">serves as a stable baseline against which the improvements from Phase 2 can be measured.</div><div class="t m0 x1 h4 y1f1 ff2 fs2 fc0 sc0 ls0 ws0">Document performance metrics (e.g., 95%+ WER on test sets).</div><div class="t m0 x1 h4 y1f2 ff1 fs2 fc0 sc0 ls0 ws0">Phase 2: Advanced Features and Domain Adaptation (6-8 Weeks)</div><div class="t m0 x1 h4 y1f3 ff2 fs2 fc0 sc0 ls0 ws0">With the new architecture in place, this phase focuses on adding the advanced features that</div><div class="t m0 x1 h4 y1f4 ff2 fs2 fc0 sc0 ls0 ws0">differentiate Trax v2. 1. <span class="ff1">Integrate Speaker Diarization:</span> Implement a robust speaker diarization</div><div class="t m0 x1 h4 y1f5 ff2 fs2 fc0 sc0 ls0 ws0">system. A pragmatic approach would be to integrate a lightweight, efficient library like DIART for</div><div class="t m0 x1 h4 y1f6 ff2 fs2 fc0 sc0 ls0 ws0">real-time processing and pair it with a more accurate model like Pyannote.audio for post-processing.</div><div class="t m0 x1 h4 y1f7 ff2 fs2 fc0 sc0 ls0 ws0">Add user-facing controls to toggle diarization on/off and select the level of detail. 2. <span class="ff1">Deploy</span></div><div class="t m0 x1 h4 y1f8 ff1 fs2 fc0 sc0 ls0 ws0">Parameter-Efficient Fine-Tuning (PEFT):<span class="ff2"> Implement a system for applying PEFT methods like</span></div><div class="t m0 x1 h4 y1f9 ff2 fs2 fc0 sc0 ls0 ws0">LoRA. This involves creating a Model Management Service that can handle the storage and loading</div><div class="t m0 x1 h4 y1fa ff2 fs2 fc0 sc0 ls0 ws0">of adapter modules. Develop a user interface or API endpoint for selecting a domain-specific model</div><div class="t m0 x1 h4 y1fb ff2 fs2 fc0 sc0 ls0 ws0">for a particular job. 3. <span class="ff1">Develop Confidence Scoring:</span> Implement a confidence scoring mechanism.</div><div class="t m0 x1 h4 y1fc ff2 fs2 fc0 sc0 ls0 ws0">Given the mixed results in the literature, a practical approach would be to extract available scores</div><div class="t m0 x1 h4 y1fd ff2 fs2 fc0 sc0 ls0 ws0">from the underlying models and provide them as a supplementary tool, clearly documenting their</div><div class="t m0 x1 h4 y1fe ff2 fs2 fc0 sc0 ls0 ws0">limitations. Do not treat them as a reliable error detection mechanism.</div><div class="t m0 x1 h4 y1ff ff1 fs2 fc0 sc0 ls0 ws0">Phase 3: Scalability and Optimization (4-6 Weeks)</div></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pfb" class="pf w0 h0" data-page-no="b"><div class="pc pcb w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y2b ff2 fs2 fc0 sc0 ls0 ws0">This phase is dedicated to ensuring the platform can handle high loads and remain cost-effective. 1. </div><div class="t m0 x1 h4 y2c ff1 fs2 fc0 sc0 ls0 ws0">Containerize the Application:<span class="ff2"> Package all microservices into Docker containers. This ensures</span></div><div class="t m0 x1 h4 y200 ff2 fs2 fc0 sc0 ls0 ws0">portability and lays the groundwork for deployment. 2. <span class="ff1">Orchestrate with Kubernetes:</span> Deploy the</div><div class="t m0 x1 h4 y201 ff2 fs2 fc0 sc0 ls0 ws0">application on a Kubernetes cluster. Configure Horizontal Pod Autoscalers (HPA) to automatically</div><div class="t m0 x1 h4 y122 ff2 fs2 fc0 sc0 ls0 ws0">scale the worker services based on message queue depth or CPU load. 3. <span class="ff1">Optimize for Performance</span></div><div class="t m0 x1 h4 y123 ff1 fs2 fc0 sc0 ls0 ws0">and Cost:<span class="ff2"> Apply Post-Training Quantization (PTQ) to the core Whisper model to reduce its memory</span></div><div class="t m0 x1 h4 y202 ff2 fs2 fc0 sc0 ls0 ws0">footprint and accelerate inference. Benchmark the system to verify that the <1GB memory per</div><div class="t m0 x1 h4 y203 ff2 fs2 fc0 sc0 ls0 ws0">worker and <$0.005 per transcript targets are met. Optimize the multi-pass pipeline for</div><div class="t m0 x1 h4 y204 ff2 fs2 fc0 sc0 ls0 ws0">computational efficiency.</div><div class="t m0 x1 h4 y126 ff1 fs2 fc0 sc0 ls0 ws0">Phase 4: User Interface and Polishing (2-4 Weeks)</div><div class="t m0 x1 h4 y205 ff2 fs2 fc0 sc0 ls0 ws0">The final phase brings the platform to life for the user. 1. <span class="ff1">Build the Web Interface:</span> Develop a</div><div class="t m0 x1 h4 y206 ff2 fs2 fc0 sc0 ls0 ws0">modern, responsive web interface using a framework like React or Vue.js. This interface should</div><div class="t m0 x1 h4 y207 ff2 fs2 fc0 sc0 ls0 ws0">manage the entire workflow: uploading files, monitoring job status, viewing and editing transcripts,</div><div class="t m0 x1 h4 y208 ff2 fs2 fc0 sc0 ls0 ws0">and downloading results. 2. <span class="ff1">Implement Real-Time Collaboration:</span> Develop the back-end and front-</div><div class="t m0 x1 h4 y209 ff2 fs2 fc0 sc0 ls0 ws0">end logic for real-time collaboration. Start with basic functionality (e.g., shared cursor, simultaneous</div><div class="t m0 x1 h4 y20a ff2 fs2 fc0 sc0 ls0 ws0">highlighting) and iterate based on usability testing. 3. <span class="ff1">Final Testing and Documentation:</span> Conduct</div><div class="t m0 x1 h4 y20b ff2 fs2 fc0 sc0 ls0 ws0">comprehensive testing, including performance benchmarks against the v1.0.0 baseline. Generate</div><div class="t m0 x1 h4 y20c ff2 fs2 fc0 sc0 ls0 ws0">detailed documentation for developers and end-users.</div><div class="t m0 x1 h4 y20d ff2 fs2 fc0 sc0 ls0 ws0">In conclusion, the development of Trax v2 is a feasible and highly rewarding endeavor. By following</div><div class="t m0 x1 h4 y20e ff2 fs2 fc0 sc0 ls0 ws0">this structured roadmap, the project can systematically address the key challenges of architecture,</div><div class="t m0 x1 h4 y20f ff2 fs2 fc0 sc0 ls0 ws0">accuracy, scalability, and user experience. The most critical decision is the architectural pivot to a</div><div class="t m0 x1 h4 y210 ff2 fs2 fc0 sc0 ls0 ws0">distributed, event-driven system. This choice will unlock the ability to implement multi-pass</div><div class="t m0 x1 h4 y211 ff2 fs2 fc0 sc0 ls0 ws0">processing, PEFT, and high concurrency, transforming Trax from a competent tool into a powerful</div><div class="t m0 x1 h4 y212 ff2 fs2 fc0 sc0 ls0 ws0">and scalable platform for the future of speech recognition.</div><div class="t m0 x1 h8 y213 ff1 fs4 fc2 sc0 ls0 ws0">Reference</div><div class="t m0 x38 h4 y214 ff2 fs2 fc0 sc0 ls0 ws0">Iteratively Improving Speech Recognition and Voice Conversion <span class="fc3">https://arxiv.org/abs/</span></div><div class="t m0 x38 h4 y215 ff2 fs2 fc3 sc0 ls0 ws0">2305.15055</div><div class="t m0 x38 h4 y216 ff2 fs2 fc0 sc0 ls0 ws0">Two-Pass End-to-End Speech Recognition - Google Research <span class="fc3">https://research.google/pubs/</span></div><div class="t m0 x38 h4 y217 ff2 fs2 fc3 sc0 ls0 ws0">two-pass-end-to-end-speech-recognition/</div><div class="t m0 x38 h4 y218 ff2 fs2 fc0 sc0 ls0 ws0">Two-pass endpoint detection for speech recognition - arXiv <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y219 ff2 fs2 fc3 sc0 ls0 ws0">2401.08916v1</div><div class="t m0 x38 h4 y21a ff2 fs2 fc0 sc0 ls0 ws0">[1908.10992] Two-Pass End-to-End Speech Recognition - ar5iv - arXiv <span class="fc3">https://</span></div><div class="t m0 x38 h4 y21b ff2 fs2 fc3 sc0 ls0 ws0">ar5iv.labs.arxiv.org/html/1908.10992</div><div class="t m0 x38 h4 y21c ff2 fs2 fc0 sc0 ls0 ws0">Align-Refine: Non-autoregressive speech recognition via iterative ... <span class="fc3">https://</span></div><div class="t m0 x38 h4 y21d ff2 fs2 fc3 sc0 ls0 ws0">www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-</div><div class="t m0 x38 h4 y21e ff2 fs2 fc3 sc0 ls0 ws0">iterative-realignment</div><div class="t m0 x39 h4 y214 ff2 fs2 fc0 sc0 ls0 ws0">1. </div><div class="t m0 x39 h4 y216 ff2 fs2 fc0 sc0 ls0 ws0">2. </div><div class="t m0 x39 h4 y218 ff2 fs2 fc0 sc0 ls0 ws0">3. </div><div class="t m0 x39 h4 y21a ff2 fs2 fc0 sc0 ls0 ws0">4. </div><div class="t m0 x39 h4 y21c ff2 fs2 fc0 sc0 ls0 ws0">5. </div><a class="l" href="https://arxiv.org/abs/2305.15055"><div class="d m1" style="border-style:none;position:absolute;left:381.301000px;bottom:279.126000px;width:106.478000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2305.15055"><div class="d m1" style="border-style:none;position:absolute;left:381.301000px;bottom:279.126000px;width:106.478000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2305.15055"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:262.326000px;width:53.279000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2305.15055"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:262.326000px;width:53.279000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.google/pubs/two-pass-end-to-end-speech-recognition/"><div class="d m1" style="border-style:none;position:absolute;left:370.614000px;bottom:239.526000px;width:144.492000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.google/pubs/two-pass-end-to-end-speech-recognition/"><div class="d m1" style="border-style:none;position:absolute;left:370.614000px;bottom:239.526000px;width:144.492000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.google/pubs/two-pass-end-to-end-speech-recognition/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:222.726000px;width:194.266000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.google/pubs/two-pass-end-to-end-speech-recognition/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:222.726000px;width:194.266000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2401.08916v1"><div class="d m1" style="border-style:none;position:absolute;left:358.841000px;bottom:199.926000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2401.08916v1"><div class="d m1" style="border-style:none;position:absolute;left:358.841000px;bottom:199.926000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2401.08916v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:183.126000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2401.08916v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:183.126000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ar5iv.labs.arxiv.org/html/1908.10992"><div class="d m1" style="border-style:none;position:absolute;left:412.144000px;bottom:160.326000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ar5iv.labs.arxiv.org/html/1908.10992"><div class="d m1" style="border-style:none;position:absolute;left:412.144000px;bottom:160.326000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ar5iv.labs.arxiv.org/html/1908.10992"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:143.526000px;width:174.000000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ar5iv.labs.arxiv.org/html/1908.10992"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:143.526000px;width:174.000000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-iterative-realignment"><div class="d m1" style="border-style:none;position:absolute;left:393.747000px;bottom:120.726000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-iterative-realignment"><div class="d m1" style="border-style:none;position:absolute;left:393.747000px;bottom:120.726000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-iterative-realignment"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:103.926000px;width:424.120000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-iterative-realignment"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:103.926000px;width:424.120000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-iterative-realignment"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:87.126000px;width:95.500000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.amazon.science/publications/align-refine-non-autoregressive-speech-recognition-via-iterative-realignment"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:87.126000px;width:95.500000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pfc" class="pf w0 h0" data-page-no="c"><div class="pc pcc w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x38 h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">Two-Pass Endpoint Detection for Speech Recognition - IEEE Xplore <span class="fc3">https://</span></div><div class="t m0 x38 h4 y220 ff2 fs2 fc3 sc0 ls0 ws0">ieeexplore.ieee.org/document/10389743/</div><div class="t m0 x38 h4 y221 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] End-to-End Neural Speaker Diarization with an Iterative Refinement ... <span class="fc3">https://www.isca-</span></div><div class="t m0 x38 h4 y222 ff2 fs2 fc3 sc0 ls0 ws0">archive.org/interspeech_2022/rybicka22_interspeech.pdf</div><div class="t m0 x38 h4 y223 ff2 fs2 fc0 sc0 ls0 ws0">Two-Pass End-to-End Speech Recognition - ResearchGate <span class="fc3">https://www.researchgate.net/</span></div><div class="t m0 x38 h4 y224 ff2 fs2 fc3 sc0 ls0 ws0">publication/335830044_Two-Pass_End-to-End_Speech_Recognition</div><div class="t m0 x38 h4 y225 ff2 fs2 fc0 sc0 ls0 ws0">An enhanced deep learning approach for speaker diarization using ... <span class="fc3">https://www.nature.com/</span></div><div class="t m0 x38 h4 y226 ff2 fs2 fc3 sc0 ls0 ws0">articles/s41598-025-09385-1</div><div class="t m0 x38 h4 y227 ff2 fs2 fc0 sc0 ls0 ws0">Systematic Evaluation of Online Speaker Diarization Systems ... - arXiv <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y228 ff2 fs2 fc3 sc0 ls0 ws0">2407.04293v1</div><div class="t m0 x38 h4 y229 ff2 fs2 fc0 sc0 ls0 ws0">[Literature Review] Two-pass Endpoint Detection for Speech ... <span class="fc3">https://www.themoonlight.io/</span></div><div class="t m0 x38 h4 y22a ff2 fs2 fc3 sc0 ls0 ws0">en/review/two-pass-endpoint-detection-for-speech-recognition</div><div class="t m0 x38 h4 y22b ff2 fs2 fc0 sc0 ls0 ws0">Pyannote.audio vs Nvidia Nemo, and Post-Processing Approach ... <span class="fc3">https://docs.voice-ping.com/</span></div><div class="t m0 x38 h4 y22c ff2 fs2 fc3 sc0 ls0 ws0">voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-</div><div class="t m0 x38 h4 y22d ff2 fs2 fc3 sc0 ls0 ws0">pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1</div><div class="t m0 x38 h4 y22e ff2 fs2 fc0 sc0 ls0 ws0">A Review of Common Online Speaker Diarization Methods - arXiv <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y22f ff2 fs2 fc3 sc0 ls0 ws0">2406.14464v1</div><div class="t m0 x38 h4 y230 ff2 fs2 fc0 sc0 ls0 ws0">Exploring the trade-off between speed and accuracy in real-time ... <span class="fc3">https://</span></div><div class="t m0 x38 h4 y231 ff2 fs2 fc3 sc0 ls0 ws0">blog.speechmatics.com/latency_accuracy</div><div class="t m0 x38 h4 y232 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Latency and Quality Trade-offs for Simultaneous Speech-to-Speech ... <span class="fc3">https://www.isca-</span></div><div class="t m0 x38 h4 y233 ff2 fs2 fc3 sc0 ls0 ws0">archive.org/interspeech_2023/dugan23_interspeech.pdf</div><div class="t m0 x38 h4 y234 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Multi-latency look-ahead for streaming speaker segmentation <span class="fc3">https://www.isca-</span></div><div class="t m0 x38 h4 y235 ff2 fs2 fc3 sc0 ls0 ws0">archive.org/interspeech_2024/rahou24_interspeech.pdf</div><div class="t m0 x38 h4 y236 ff2 fs2 fc0 sc0 ls0 ws0">Edge-ASR: Towards Low-Bit Quantization of Automatic Speech ... <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y237 ff2 fs2 fc3 sc0 ls0 ws0">2507.07877v2</div><div class="t m0 x38 h4 y238 ff2 fs2 fc0 sc0 ls0 ws0">What is speaker diarization and how does it work? (Complete 2025 ... <span class="fc3">https://assemblyai.com/</span></div><div class="t m0 x38 h4 y239 ff2 fs2 fc3 sc0 ls0 ws0">blog/what-is-speaker-diarization-and-how-does-it-work</div><div class="t m0 x38 h4 y23a ff2 fs2 fc0 sc0 ls0 ws0">Optimizing Speaker Diarization for the Classroom <span class="fc3">https://jedm.educationaldatamining.org/</span></div><div class="t m0 x38 h4 y23b ff2 fs2 fc3 sc0 ls0 ws0">index.php/JEDM/article/download/841/240</div><div class="t m0 x38 h4 y23c ff2 fs2 fc0 sc0 ls0 ws0">LLM-based speaker diarization correction: A generalizable approach <span class="fc3">https://</span></div><div class="t m0 x38 h4 y23d ff2 fs2 fc3 sc0 ls0 ws0">www.sciencedirect.com/science/article/abs/pii/S0167639325000391</div><div class="t m0 x38 h4 y23e ff2 fs2 fc0 sc0 ls0 ws0">A review of the best ASR engines and the models powering them in ... <span class="fc3">https://www.gladia.io/</span></div><div class="t m0 x38 h4 y23f ff2 fs2 fc3 sc0 ls0 ws0">blog/a-review-of-the-best-asr-engines-and-the-models-powering-them-in-2024</div><div class="t m0 x38 h4 y240 ff2 fs2 fc0 sc0 ls0 ws0">Efficient Cascaded Streaming ASR System Via Frame Rate Reduction <span class="fc3">https://</span></div><div class="t m0 x38 h4 y241 ff2 fs2 fc3 sc0 ls0 ws0">ieeexplore.ieee.org/document/10389645/</div><div class="t m0 x38 h4 y242 ff2 fs2 fc0 sc0 ls0 ws0">Iterative refinement, not training objective, makes HuBERT behave ... <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y243 ff2 fs2 fc3 sc0 ls0 ws0">2508.08110v1</div><div class="t m0 x39 h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">6. </div><div class="t m0 x39 h4 y221 ff2 fs2 fc0 sc0 ls0 ws0">7. </div><div class="t m0 x39 h4 y223 ff2 fs2 fc0 sc0 ls0 ws0">8. </div><div class="t m0 x39 h4 y225 ff2 fs2 fc0 sc0 ls0 ws0">9. </div><div class="t m0 x3a h4 y227 ff2 fs2 fc0 sc0 ls0 ws0">10. </div><div class="t m0 x3a h4 y229 ff2 fs2 fc0 sc0 ls0 ws0">11. </div><div class="t m0 x3a h4 y22b ff2 fs2 fc0 sc0 ls0 ws0">12. </div><div class="t m0 x3a h4 y22e ff2 fs2 fc0 sc0 ls0 ws0">13. </div><div class="t m0 x3a h4 y230 ff2 fs2 fc0 sc0 ls0 ws0">14. </div><div class="t m0 x3a h4 y232 ff2 fs2 fc0 sc0 ls0 ws0">15. </div><div class="t m0 x3a h4 y234 ff2 fs2 fc0 sc0 ls0 ws0">16. </div><div class="t m0 x3a h4 y236 ff2 fs2 fc0 sc0 ls0 ws0">17. </div><div class="t m0 x3a h4 y238 ff2 fs2 fc0 sc0 ls0 ws0">18. </div><div class="t m0 x3a h4 y23a ff2 fs2 fc0 sc0 ls0 ws0">19. </div><div class="t m0 x3a h4 y23c ff2 fs2 fc0 sc0 ls0 ws0">20. </div><div class="t m0 x3a h4 y23e ff2 fs2 fc0 sc0 ls0 ws0">21. </div><div class="t m0 x3a h4 y240 ff2 fs2 fc0 sc0 ls0 ws0">22. </div><div class="t m0 x3a h4 y244 ff2 fs2 fc0 sc0 ls0 ws0">23. </div><a class="l" href="https://ieeexplore.ieee.org/document/10389743/"><div class="d m1" style="border-style:none;position:absolute;left:408.073000px;bottom:768.840000px;width:38.252000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389743/"><div class="d m1" style="border-style:none;position:absolute;left:408.073000px;bottom:768.840000px;width:38.252000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389743/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:195.648000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389743/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:195.648000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2022/rybicka22_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:445.725000px;bottom:729.240000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2022/rybicka22_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:445.725000px;bottom:729.240000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2022/rybicka22_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:712.440000px;width:267.245000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2022/rybicka22_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:712.440000px;width:267.245000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/335830044_Two-Pass_End-to-End_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:355.627000px;bottom:689.640000px;width:145.276000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/335830044_Two-Pass_End-to-End_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:355.627000px;bottom:689.640000px;width:145.276000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/335830044_Two-Pass_End-to-End_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:672.840000px;width:324.744000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/335830044_Two-Pass_End-to-End_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:672.840000px;width:324.744000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.nature.com/articles/s41598-025-09385-1"><div class="d m1" style="border-style:none;position:absolute;left:398.276000px;bottom:650.040000px;width:123.268000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.nature.com/articles/s41598-025-09385-1"><div class="d m1" style="border-style:none;position:absolute;left:398.276000px;bottom:650.040000px;width:123.268000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.nature.com/articles/s41598-025-09385-1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:633.240000px;width:132.691000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.nature.com/articles/s41598-025-09385-1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:633.240000px;width:132.691000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2407.04293v1"><div class="d m1" style="border-style:none;position:absolute;left:411.719000px;bottom:610.440000px;width:112.729000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2407.04293v1"><div class="d m1" style="border-style:none;position:absolute;left:411.719000px;bottom:610.440000px;width:112.729000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2407.04293v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:593.640000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2407.04293v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:593.640000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.themoonlight.io/en/review/two-pass-endpoint-detection-for-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:377.754000px;bottom:570.840000px;width:145.118000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.themoonlight.io/en/review/two-pass-endpoint-detection-for-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:377.754000px;bottom:570.840000px;width:145.118000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.themoonlight.io/en/review/two-pass-endpoint-detection-for-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:554.040000px;width:296.630000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.themoonlight.io/en/review/two-pass-endpoint-detection-for-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:554.040000px;width:296.630000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://docs.voice-ping.com/voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1"><div class="d m1" style="border-style:none;position:absolute;left:392.235000px;bottom:531.240000px;width:140.006000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://docs.voice-ping.com/voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1"><div class="d m1" style="border-style:none;position:absolute;left:392.235000px;bottom:531.240000px;width:140.006000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://docs.voice-ping.com/voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:514.440000px;width:440.675000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://docs.voice-ping.com/voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:514.440000px;width:440.675000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://docs.voice-ping.com/voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:497.640000px;width:423.231000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://docs.voice-ping.com/voiceping-corporation-company-profile/apr-2024-speaker-diarization-performance-evaluation-pyannoteaudio-vs-nvidia-nemo-and-post-processing-approach-using-openais-gpt-4-turbo-1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:497.640000px;width:423.231000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.14464v1"><div class="d m1" style="border-style:none;position:absolute;left:394.800000px;bottom:474.840000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.14464v1"><div class="d m1" style="border-style:none;position:absolute;left:394.800000px;bottom:474.840000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.14464v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:458.040000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.14464v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:458.040000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://blog.speechmatics.com/latency_accuracy"><div class="d m1" style="border-style:none;position:absolute;left:388.981000px;bottom:435.240000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://blog.speechmatics.com/latency_accuracy"><div class="d m1" style="border-style:none;position:absolute;left:388.981000px;bottom:435.240000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://blog.speechmatics.com/latency_accuracy"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:418.440000px;width:191.268000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://blog.speechmatics.com/latency_accuracy"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:418.440000px;width:191.268000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2023/dugan23_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:437.402000px;bottom:395.640000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2023/dugan23_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:437.402000px;bottom:395.640000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2023/dugan23_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:378.840000px;width:262.121000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2023/dugan23_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:378.840000px;width:262.121000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/rahou24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:395.873000px;bottom:356.040000px;width:85.650000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/rahou24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:395.873000px;bottom:356.040000px;width:85.650000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/rahou24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:339.240000px;width:260.861000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/rahou24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:339.240000px;width:260.861000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2507.07877v2"><div class="d m1" style="border-style:none;position:absolute;left:393.124000px;bottom:316.440000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2507.07877v2"><div class="d m1" style="border-style:none;position:absolute;left:393.124000px;bottom:316.440000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2507.07877v2"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:299.640000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2507.07877v2"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:299.640000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assemblyai.com/blog/what-is-speaker-diarization-and-how-does-it-work"><div class="d m1" style="border-style:none;position:absolute;left:401.711000px;bottom:276.840000px;width:116.631000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assemblyai.com/blog/what-is-speaker-diarization-and-how-does-it-work"><div class="d m1" style="border-style:none;position:absolute;left:401.711000px;bottom:276.840000px;width:116.631000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assemblyai.com/blog/what-is-speaker-diarization-and-how-does-it-work"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:260.040000px;width:258.614000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assemblyai.com/blog/what-is-speaker-diarization-and-how-does-it-work"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:260.040000px;width:258.614000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://jedm.educationaldatamining.org/index.php/JEDM/article/download/841/240"><div class="d m1" style="border-style:none;position:absolute;left:314.922000px;bottom:237.240000px;width:192.475000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://jedm.educationaldatamining.org/index.php/JEDM/article/download/841/240"><div class="d m1" style="border-style:none;position:absolute;left:314.922000px;bottom:237.240000px;width:192.475000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://jedm.educationaldatamining.org/index.php/JEDM/article/download/841/240"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:220.440000px;width:215.082000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://jedm.educationaldatamining.org/index.php/JEDM/article/download/841/240"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:220.440000px;width:215.082000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/abs/pii/S0167639325000391"><div class="d m1" style="border-style:none;position:absolute;left:397.281000px;bottom:197.640000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/abs/pii/S0167639325000391"><div class="d m1" style="border-style:none;position:absolute;left:397.281000px;bottom:197.640000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/abs/pii/S0167639325000391"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:180.840000px;width:323.069000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/abs/pii/S0167639325000391"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:180.840000px;width:323.069000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.gladia.io/blog/a-review-of-the-best-asr-engines-and-the-models-powering-them-in-2024"><div class="d m1" style="border-style:none;position:absolute;left:406.728000px;bottom:158.040000px;width:108.999000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.gladia.io/blog/a-review-of-the-best-asr-engines-and-the-models-powering-them-in-2024"><div class="d m1" style="border-style:none;position:absolute;left:406.728000px;bottom:158.040000px;width:108.999000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.gladia.io/blog/a-review-of-the-best-asr-engines-and-the-models-powering-them-in-2024"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:141.240000px;width:365.928000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.gladia.io/blog/a-review-of-the-best-asr-engines-and-the-models-powering-them-in-2024"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:141.240000px;width:365.928000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389645/"><div class="d m1" style="border-style:none;position:absolute;left:403.993000px;bottom:118.440000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389645/"><div class="d m1" style="border-style:none;position:absolute;left:403.993000px;bottom:118.440000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389645/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:101.640000px;width:195.648000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10389645/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:101.640000px;width:195.648000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2508.08110v1"><div class="d m1" style="border-style:none;position:absolute;left:406.623000px;bottom:78.839800px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2508.08110v1"><div class="d m1" style="border-style:none;position:absolute;left:406.623000px;bottom:78.839800px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2508.08110v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:62.039800px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2508.08110v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:62.039800px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pfd" class="pf w0 h0" data-page-no="d"><div class="pc pcd w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x38 h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">SelfVC: Voice Conversion With Iterative Refinement using Self ... <span class="fc3">https://research.nvidia.com/</span></div><div class="t m0 x38 h4 y220 ff2 fs2 fc3 sc0 ls0 ws0">labs/conv-ai/publications/2024/2024-selfvc/</div><div class="t m0 x38 h4 y221 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Comparative Analysis of Personalized Voice Activity Detection ... <span class="fc3">https://www.isca-</span></div><div class="t m0 x38 h4 y222 ff2 fs2 fc3 sc0 ls0 ws0">archive.org/interspeech_2024/buddi24_interspeech.pdf</div><div class="t m0 x38 h4 y223 ff2 fs2 fc0 sc0 ls0 ws0">(PDF) SelfVC: Voice Conversion With Iterative Refinement using ... <span class="fc3">https://</span></div><div class="t m0 x38 h4 y224 ff2 fs2 fc3 sc0 ls0 ws0">www.researchgate.net/publication/</div><div class="t m0 x38 h4 y245 ff2 fs2 fc3 sc0 ls0 ws0">381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations</div><div class="t m0 x38 h4 y226 ff2 fs2 fc0 sc0 ls0 ws0">Thinking aloud.. LoRA & Prompt Tuning - DeepLearning.AI <span class="fc3">https://</span></div><div class="t m0 x38 h4 y246 ff2 fs2 fc3 sc0 ls0 ws0">community.deeplearning.ai/t/thinking-aloud-lora-prompt-tuning/465150</div><div class="t m0 x38 h4 y228 ff2 fs2 fc0 sc0 ls0 ws0">A Domain Adaptation Framework for Speech Recognition Systems ... <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y247 ff2 fs2 fc3 sc0 ls0 ws0">2501.12501v1</div><div class="t m0 x38 h4 y22a ff2 fs2 fc0 sc0 ls0 ws0">Low-Resource Domain Adaptation for Speech LLMs via Text-Only ... <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y248 ff2 fs2 fc3 sc0 ls0 ws0">2506.05671v1</div><div class="t m0 x38 h4 y22c ff2 fs2 fc0 sc0 ls0 ws0">A Comparison of Parameter-Efficient ASR Domain Adaptation ... <span class="fc3">https://ieeexplore.ieee.org/</span></div><div class="t m0 x38 h4 y22d ff2 fs2 fc3 sc0 ls0 ws0">document/10445894/</div><div class="t m0 x38 h4 y22e ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Smarter Fine-Tuning: How LoRA Enhances Large Language Models <span class="fc3">https://hal.science/</span></div><div class="t m0 x38 h4 y22f ff2 fs2 fc3 sc0 ls0 ws0">hal-04983079/document</div><div class="t m0 x38 h4 y230 ff2 fs2 fc0 sc0 ls0 ws0">Fine-tuning ASR Models: Boosting Accuracy and Adaptability <span class="fc3">https://lamarr-institute.org/blog/</span></div><div class="t m0 x38 h4 y231 ff2 fs2 fc3 sc0 ls0 ws0">fine-tuning-asr-models/</div><div class="t m0 x38 h4 y232 ff2 fs2 fc0 sc0 ls0 ws0">Fine-Tuning Transformers Efficiently: A Survey on LoRA and Its Impact <span class="fc3">https://</span></div><div class="t m0 x38 h4 y233 ff2 fs2 fc3 sc0 ls0 ws0">www.preprints.org/manuscript/202502.1637/v1</div><div class="t m0 x38 h4 y234 ff2 fs2 fc0 sc0 ls0 ws0">Parameter-efficient adaptation with multi-channel adversarial ... <span class="fc3">https://asmp-</span></div><div class="t m0 x38 h4 y235 ff2 fs2 fc3 sc0 ls0 ws0">eurasipjournals.springeropen.com/articles/10.1186/s13636-025-00406-5</div><div class="t m0 x38 h4 y236 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Low Rank Adaptation for Multilingual Speech Emotion Recognition <span class="fc3">https://www.isca-</span></div><div class="t m0 x38 h4 y237 ff2 fs2 fc3 sc0 ls0 ws0">archive.org/interspeech_2024/goncalves24_interspeech.pdf</div><div class="t m0 x38 h4 y238 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] The Role of LoRA in Parameter-Efficient Adaptation | TechRxiv <span class="fc3">https://</span></div><div class="t m0 x38 h4 y239 ff2 fs2 fc3 sc0 ls0 ws0">www.techrxiv.org/users/887510/articles/1269329/master/file/data/</div><div class="t m0 x38 h4 y249 ff2 fs2 fc3 sc0 ls0 ws0">Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/</div><div class="t m0 x38 h4 y24a ff2 fs2 fc3 sc0 ls0 ws0">Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf</div><div class="t m0 x38 h4 y24b ff2 fs2 fc0 sc0 ls0 ws0">Machine Learning Confidence Scores — All You Need to Know as a ... <span class="fc3">https://medium.com/</span></div><div class="t m0 x38 h4 y24c ff2 fs2 fc3 sc0 ls0 ws0">voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-</div><div class="t m0 x38 h4 y24d ff2 fs2 fc3 sc0 ls0 ws0">designer-8babd39caae7</div><div class="t m0 x38 h4 y24e ff2 fs2 fc0 sc0 ls0 ws0">How to Use Confidence Scores in Machine Learning Models - Mindee <span class="fc3">https://</span></div><div class="t m0 x38 h4 y24f ff2 fs2 fc3 sc0 ls0 ws0">www.mindee.com/blog/how-use-confidence-scores-ml-models</div><div class="t m0 x38 h4 y250 ff2 fs2 fc0 sc0 ls0 ws0">Evaluating ASR Confidence Scores for Automated Error Detection in ... <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y251 ff2 fs2 fc3 sc0 ls0 ws0">2503.15124v1</div><div class="t m0 x3a h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">24. </div><div class="t m0 x3a h4 y221 ff2 fs2 fc0 sc0 ls0 ws0">25. </div><div class="t m0 x3a h4 y223 ff2 fs2 fc0 sc0 ls0 ws0">26. </div><div class="t m0 x3a h4 y226 ff2 fs2 fc0 sc0 ls0 ws0">27. </div><div class="t m0 x3a h4 y228 ff2 fs2 fc0 sc0 ls0 ws0">28. </div><div class="t m0 x3a h4 y22a ff2 fs2 fc0 sc0 ls0 ws0">29. </div><div class="t m0 x3a h4 y22c ff2 fs2 fc0 sc0 ls0 ws0">30. </div><div class="t m0 x3a h4 y22e ff2 fs2 fc0 sc0 ls0 ws0">31. </div><div class="t m0 x3a h4 y230 ff2 fs2 fc0 sc0 ls0 ws0">32. </div><div class="t m0 x3a h4 y232 ff2 fs2 fc0 sc0 ls0 ws0">33. </div><div class="t m0 x3a h4 y234 ff2 fs2 fc0 sc0 ls0 ws0">34. </div><div class="t m0 x3a h4 y236 ff2 fs2 fc0 sc0 ls0 ws0">35. </div><div class="t m0 x3a h4 y238 ff2 fs2 fc0 sc0 ls0 ws0">36. </div><div class="t m0 x3a h4 y24b ff2 fs2 fc0 sc0 ls0 ws0">37. </div><div class="t m0 x3a h4 y24e ff2 fs2 fc0 sc0 ls0 ws0">38. </div><div class="t m0 x3a h4 y250 ff2 fs2 fc0 sc0 ls0 ws0">39. </div><a class="l" href="https://research.nvidia.com/labs/conv-ai/publications/2024/2024-selfvc/"><div class="d m1" style="border-style:none;position:absolute;left:386.222000px;bottom:768.840000px;width:136.369000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.nvidia.com/labs/conv-ai/publications/2024/2024-selfvc/"><div class="d m1" style="border-style:none;position:absolute;left:386.222000px;bottom:768.840000px;width:136.369000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.nvidia.com/labs/conv-ai/publications/2024/2024-selfvc/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:214.136000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://research.nvidia.com/labs/conv-ai/publications/2024/2024-selfvc/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:214.136000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/buddi24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:417.877000px;bottom:729.240000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/buddi24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:417.877000px;bottom:729.240000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/buddi24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:712.440000px;width:260.621000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/buddi24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:712.440000px;width:260.621000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations"><div class="d m1" style="border-style:none;position:absolute;left:398.619000px;bottom:689.640000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations"><div class="d m1" style="border-style:none;position:absolute;left:398.619000px;bottom:689.640000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:672.840000px;width:165.000000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:672.840000px;width:165.000000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:656.040000px;width:453.842000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/381121265_SelfVC_Voice_Conversion_With_Iterative_Refinement_using_Self_Transformations"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:656.040000px;width:453.842000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://community.deeplearning.ai/t/thinking-aloud-lora-prompt-tuning/465150"><div class="d m1" style="border-style:none;position:absolute;left:366.329000px;bottom:633.240000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://community.deeplearning.ai/t/thinking-aloud-lora-prompt-tuning/465150"><div class="d m1" style="border-style:none;position:absolute;left:366.329000px;bottom:633.240000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://community.deeplearning.ai/t/thinking-aloud-lora-prompt-tuning/465150"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:616.440000px;width:341.722000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://community.deeplearning.ai/t/thinking-aloud-lora-prompt-tuning/465150"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:616.440000px;width:341.722000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2501.12501v1"><div class="d m1" style="border-style:none;position:absolute;left:404.834000px;bottom:593.640000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2501.12501v1"><div class="d m1" style="border-style:none;position:absolute;left:404.834000px;bottom:593.640000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2501.12501v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:576.840000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2501.12501v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:576.840000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2506.05671v1"><div class="d m1" style="border-style:none;position:absolute;left:406.851000px;bottom:554.040000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2506.05671v1"><div class="d m1" style="border-style:none;position:absolute;left:406.851000px;bottom:554.040000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2506.05671v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:537.240000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2506.05671v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:537.240000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10445894/"><div class="d m1" style="border-style:none;position:absolute;left:388.057000px;bottom:514.440000px;width:129.997000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10445894/"><div class="d m1" style="border-style:none;position:absolute;left:388.057000px;bottom:514.440000px;width:129.997000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10445894/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:497.640000px;width:103.904000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://ieeexplore.ieee.org/document/10445894/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:497.640000px;width:103.904000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://hal.science/hal-04983079/document"><div class="d m1" style="border-style:none;position:absolute;left:432.603000px;bottom:474.840000px;width:93.880000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://hal.science/hal-04983079/document"><div class="d m1" style="border-style:none;position:absolute;left:432.603000px;bottom:474.840000px;width:93.880000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://hal.science/hal-04983079/document"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:458.040000px;width:115.398000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://hal.science/hal-04983079/document"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:458.040000px;width:115.398000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://lamarr-institute.org/blog/fine-tuning-asr-models/"><div class="d m1" style="border-style:none;position:absolute;left:368.594000px;bottom:435.240000px;width:159.610000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://lamarr-institute.org/blog/fine-tuning-asr-models/"><div class="d m1" style="border-style:none;position:absolute;left:368.594000px;bottom:435.240000px;width:159.610000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://lamarr-institute.org/blog/fine-tuning-asr-models/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:418.440000px;width:111.508000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://lamarr-institute.org/blog/fine-tuning-asr-models/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:418.440000px;width:111.508000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.preprints.org/manuscript/202502.1637/v1"><div class="d m1" style="border-style:none;position:absolute;left:422.100000px;bottom:395.640000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.preprints.org/manuscript/202502.1637/v1"><div class="d m1" style="border-style:none;position:absolute;left:422.100000px;bottom:395.640000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.preprints.org/manuscript/202502.1637/v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:378.840000px;width:226.775000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.preprints.org/manuscript/202502.1637/v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:378.840000px;width:226.775000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-025-00406-5"><div class="d m1" style="border-style:none;position:absolute;left:374.102000px;bottom:356.040000px;width:66.631000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-025-00406-5"><div class="d m1" style="border-style:none;position:absolute;left:374.102000px;bottom:356.040000px;width:66.631000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-025-00406-5"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:339.240000px;width:337.671000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-025-00406-5"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:339.240000px;width:337.671000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/goncalves24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:431.049000px;bottom:316.440000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/goncalves24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:431.049000px;bottom:316.440000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/goncalves24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:299.640000px;width:279.125000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/goncalves24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:299.640000px;width:279.125000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:418.476000px;bottom:276.840000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:418.476000px;bottom:276.840000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:260.040000px;width:323.931000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:260.040000px;width:323.931000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:243.240000px;width:495.040000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:243.240000px;width:495.040000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:226.440000px;width:507.664000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.techrxiv.org/users/887510/articles/1269329/master/file/data/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation/Revolutionizing_Large_Model_Fine_Tuning__The_Role_of_LoRA_in_Parameter_Efficient_Adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:226.440000px;width:507.664000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://medium.com/voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-designer-8babd39caae7"><div class="d m1" style="border-style:none;position:absolute;left:412.570000px;bottom:203.640000px;width:105.390000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://medium.com/voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-designer-8babd39caae7"><div class="d m1" style="border-style:none;position:absolute;left:412.570000px;bottom:203.640000px;width:105.390000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://medium.com/voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-designer-8babd39caae7"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:186.840000px;width:445.395000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://medium.com/voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-designer-8babd39caae7"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:186.840000px;width:445.395000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://medium.com/voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-designer-8babd39caae7"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:170.040000px;width:107.752000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://medium.com/voice-tech-global/machine-learning-confidence-scores-all-you-need-to-know-as-a-conversation-designer-8babd39caae7"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:170.040000px;width:107.752000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.mindee.com/blog/how-use-confidence-scores-ml-models"><div class="d m1" style="border-style:none;position:absolute;left:407.555000px;bottom:147.240000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.mindee.com/blog/how-use-confidence-scores-ml-models"><div class="d m1" style="border-style:none;position:absolute;left:407.555000px;bottom:147.240000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.mindee.com/blog/how-use-confidence-scores-ml-models"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:130.440000px;width:295.794000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.mindee.com/blog/how-use-confidence-scores-ml-models"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:130.440000px;width:295.794000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2503.15124v1"><div class="d m1" style="border-style:none;position:absolute;left:417.322000px;bottom:107.640000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2503.15124v1"><div class="d m1" style="border-style:none;position:absolute;left:417.322000px;bottom:107.640000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2503.15124v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:90.839800px;width:64.535000px;height:16.800200px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2503.15124v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:90.839800px;width:64.535000px;height:16.800200px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pfe" class="pf w0 h0" data-page-no="e"><div class="pc pce w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x38 h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">Using transcription confidence scores to improve slot filling in ... - AWS <span class="fc3">https://</span></div><div class="t m0 x38 h4 y220 ff2 fs2 fc3 sc0 ls0 ws0">aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-</div><div class="t m0 x38 h4 y252 ff2 fs2 fc3 sc0 ls0 ws0">slot-filling-in-amazon-lex/</div><div class="t m0 x38 h4 y222 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Prompt-tuning in ASR systems for efficient domain-adaptation <span class="fc3">https://</span></div><div class="t m0 x38 h4 y253 ff2 fs2 fc3 sc0 ls0 ws0">assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-</div><div class="t m0 x38 h4 y254 ff2 fs2 fc3 sc0 ls0 ws0">for-efficient-domain-adaptation.pdf</div><div class="t m0 x38 h4 y245 ff2 fs2 fc0 sc0 ls0 ws0">Modular Domain Adaptation for Conformer-Based Streaming ASR <span class="fc3">https://</span></div><div class="t m0 x38 h4 y255 ff2 fs2 fc3 sc0 ls0 ws0">www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-</div><div class="t m0 x38 h4 y256 ff2 fs2 fc3 sc0 ls0 ws0">Based_Streaming_ASR</div><div class="t m0 x38 h4 y257 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Improving Speech Recognition with Prompt-based Contextualized ... <span class="fc3">https://www.isca-</span></div><div class="t m0 x38 h4 y258 ff2 fs2 fc3 sc0 ls0 ws0">archive.org/interspeech_2024/manhtienanh24_interspeech.pdf</div><div class="t m0 x38 h4 y259 ff2 fs2 fc0 sc0 ls0 ws0">Prompting Large Language Models for Zero-Shot Domain ... <span class="fc3">https://www.researchgate.net/</span></div><div class="t m0 x38 h4 y25a ff2 fs2 fc3 sc0 ls0 ws0">publication/377538976_Prompting_Large_Language_Models_for_Zero-</div><div class="t m0 x38 h4 y25b ff2 fs2 fc3 sc0 ls0 ws0">Shot_Domain_Adaptation_in_Speech_Recognition</div><div class="t m0 x38 h4 y25c ff2 fs2 fc0 sc0 ls0 ws0">What is the significance of confidence scores in speech recognition? <span class="fc3">https://zilliz.com/ai-faq/</span></div><div class="t m0 x38 h4 y25d ff2 fs2 fc3 sc0 ls0 ws0">what-is-the-significance-of-confidence-scores-in-speech-recognition</div><div class="t m0 x38 h4 y25e ff2 fs2 fc0 sc0 ls0 ws0">What is the significance of confidence scores in speech recognition? <span class="fc3">https://milvus.io/ai-quick-</span></div><div class="t m0 x38 h4 y25f ff2 fs2 fc3 sc0 ls0 ws0">reference/what-is-the-significance-of-confidence-scores-in-speech-recognition</div><div class="t m0 x38 h4 y260 ff2 fs2 fc0 sc0 ls0 ws0">What do confidence scores mean in speech recognition? <span class="fc3">https://stackoverflow.com/questions/</span></div><div class="t m0 x38 h4 y261 ff2 fs2 fc3 sc0 ls0 ws0">61331681/what-do-confidence-scores-mean-in-speech-recognition</div><div class="t m0 x38 h4 y262 ff2 fs2 fc0 sc0 ls0 ws0">[PDF] Using Automatically Created Confidence Measures - LSEG <span class="fc3">https://www.lseg.com/</span></div><div class="t m0 x38 h4 y263 ff2 fs2 fc3 sc0 ls0 ws0">content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-</div><div class="t m0 x38 h4 y264 ff2 fs2 fc3 sc0 ls0 ws0">research-paper.pdf</div><div class="t m0 x38 h4 y265 ff2 fs2 fc0 sc0 ls0 ws0">Ensuring Transcription Accuracy: Techniques and Best Practices <span class="fc3">https://waywithwords.net/</span></div><div class="t m0 x38 h4 y266 ff2 fs2 fc3 sc0 ls0 ws0">resource/transcription-accuracy-best-practices/</div><div class="t m0 x38 h4 y267 ff2 fs2 fc0 sc0 ls0 ws0">LLM-based speaker diarization correction: A generalizable approach <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y268 ff2 fs2 fc3 sc0 ls0 ws0">2406.04927v3</div><div class="t m0 x38 h4 y269 ff2 fs2 fc0 sc0 ls0 ws0">How accurate is speech-to-text in 2025? - AssemblyAI <span class="fc3">https://www.assemblyai.com/blog/how-</span></div><div class="t m0 x38 h4 y26a ff2 fs2 fc3 sc0 ls0 ws0">accurate-speech-to-text</div><div class="t m0 x38 h4 y26b ff2 fs2 fc0 sc0 ls0 ws0">Survey of End-to-End Multi-Speaker Automatic Speech Recognition ... <span class="fc3">https://arxiv.org/html/</span></div><div class="t m0 x38 h4 y26c ff2 fs2 fc3 sc0 ls0 ws0">2505.10975v1</div><div class="t m0 x38 h4 y24d ff2 fs2 fc0 sc0 ls0 ws0">Speech-to-Text APIs: Key Players and Innovations in 2024 - Krisp <span class="fc3">https://krisp.ai/blog/speech-</span></div><div class="t m0 x38 h4 y26d ff2 fs2 fc3 sc0 ls0 ws0">to-text-apis-key-players-and-innovations-in-2024/</div><div class="t m0 x38 h4 y24f ff2 fs2 fc0 sc0 ls0 ws0">Moving beyond word error rate to evaluate automatic speech ... <span class="fc3">https://www.sciencedirect.com/</span></div><div class="t m0 x38 h4 y26e ff2 fs2 fc3 sc0 ls0 ws0">science/article/pii/S0165178125003385</div><div class="t m0 x38 h4 y26f ff2 fs2 fc0 sc0 ls0 ws0">Top Real-Time Speech-to-Text Tools in 2024 - Galileo AI <span class="fc3">https://galileo.ai/blog/best-real-time-</span></div><div class="t m0 x38 h4 y270 ff2 fs2 fc3 sc0 ls0 ws0">speech-to-text-tools</div><div class="t m0 x3a h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">40. </div><div class="t m0 x3a h4 y222 ff2 fs2 fc0 sc0 ls0 ws0">41. </div><div class="t m0 x3a h4 y245 ff2 fs2 fc0 sc0 ls0 ws0">42. </div><div class="t m0 x3a h4 y257 ff2 fs2 fc0 sc0 ls0 ws0">43. </div><div class="t m0 x3a h4 y259 ff2 fs2 fc0 sc0 ls0 ws0">44. </div><div class="t m0 x3a h4 y25c ff2 fs2 fc0 sc0 ls0 ws0">45. </div><div class="t m0 x3a h4 y25e ff2 fs2 fc0 sc0 ls0 ws0">46. </div><div class="t m0 x3a h4 y260 ff2 fs2 fc0 sc0 ls0 ws0">47. </div><div class="t m0 x3a h4 y262 ff2 fs2 fc0 sc0 ls0 ws0">48. </div><div class="t m0 x3a h4 y265 ff2 fs2 fc0 sc0 ls0 ws0">49. </div><div class="t m0 x3a h4 y267 ff2 fs2 fc0 sc0 ls0 ws0">50. </div><div class="t m0 x3a h4 y269 ff2 fs2 fc0 sc0 ls0 ws0">51. </div><div class="t m0 x3a h4 y26b ff2 fs2 fc0 sc0 ls0 ws0">52. </div><div class="t m0 x3a h4 y24d ff2 fs2 fc0 sc0 ls0 ws0">53. </div><div class="t m0 x3a h4 y24f ff2 fs2 fc0 sc0 ls0 ws0">54. </div><div class="t m0 x3a h4 y251 ff2 fs2 fc0 sc0 ls0 ws0">55. </div><a class="l" href="https://aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-slot-filling-in-amazon-lex/"><div class="d m1" style="border-style:none;position:absolute;left:416.060000px;bottom:768.840000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-slot-filling-in-amazon-lex/"><div class="d m1" style="border-style:none;position:absolute;left:416.060000px;bottom:768.840000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-slot-filling-in-amazon-lex/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:436.466000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-slot-filling-in-amazon-lex/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:436.466000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-slot-filling-in-amazon-lex/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:735.240000px;width:122.604000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://aws.amazon.com/blogs/machine-learning/using-transcription-confidence-scores-to-improve-slot-filling-in-amazon-lex/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:735.240000px;width:122.604000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-for-efficient-domain-adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:405.363000px;bottom:712.440000px;width:38.252000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-for-efficient-domain-adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:405.363000px;bottom:712.440000px;width:38.252000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-for-efficient-domain-adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:695.640000px;width:438.335000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-for-efficient-domain-adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:695.640000px;width:438.335000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-for-efficient-domain-adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:678.840000px;width:165.598000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://assets.amazon.science/cf/6f/65b75c8544fabc2e2adab334140c/prompt-tuning-in-asr-systems-for-efficient-domain-adaptation.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:678.840000px;width:165.598000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-Based_Streaming_ASR"><div class="d m1" style="border-style:none;position:absolute;left:393.660000px;bottom:656.040000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-Based_Streaming_ASR"><div class="d m1" style="border-style:none;position:absolute;left:393.660000px;bottom:656.040000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-Based_Streaming_ASR"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:639.240000px;width:445.442000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-Based_Streaming_ASR"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:639.240000px;width:445.442000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-Based_Streaming_ASR"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:622.440000px;width:107.619000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/373248113_Modular_Domain_Adaptation_for_Conformer-Based_Streaming_ASR"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:622.440000px;width:107.619000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/manhtienanh24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:433.344000px;bottom:599.640000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/manhtienanh24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:433.344000px;bottom:599.640000px;width:85.651000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/manhtienanh24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:582.840000px;width:294.722000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.isca-archive.org/interspeech_2024/manhtienanh24_interspeech.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:582.840000px;width:294.722000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/377538976_Prompting_Large_Language_Models_for_Zero-Shot_Domain_Adaptation_in_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:364.446000px;bottom:560.040000px;width:145.275000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/377538976_Prompting_Large_Language_Models_for_Zero-Shot_Domain_Adaptation_in_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:364.446000px;bottom:560.040000px;width:145.275000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/377538976_Prompting_Large_Language_Models_for_Zero-Shot_Domain_Adaptation_in_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:543.240000px;width:340.091000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/377538976_Prompting_Large_Language_Models_for_Zero-Shot_Domain_Adaptation_in_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:543.240000px;width:340.091000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/377538976_Prompting_Large_Language_Models_for_Zero-Shot_Domain_Adaptation_in_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:526.440000px;width:240.050000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.researchgate.net/publication/377538976_Prompting_Large_Language_Models_for_Zero-Shot_Domain_Adaptation_in_Speech_Recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:526.440000px;width:240.050000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://zilliz.com/ai-faq/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:395.713000px;bottom:503.640000px;width:120.492000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://zilliz.com/ai-faq/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:395.713000px;bottom:503.640000px;width:120.492000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://zilliz.com/ai-faq/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:486.840000px;width:315.278000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://zilliz.com/ai-faq/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:486.840000px;width:315.278000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://milvus.io/ai-quick-reference/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:395.713000px;bottom:464.040000px;width:126.650000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://milvus.io/ai-quick-reference/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:395.713000px;bottom:464.040000px;width:126.650000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://milvus.io/ai-quick-reference/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:447.240000px;width:364.282000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://milvus.io/ai-quick-reference/what-is-the-significance-of-confidence-scores-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:447.240000px;width:364.282000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://stackoverflow.com/questions/61331681/what-do-confidence-scores-mean-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:341.334000px;bottom:424.440000px;width:182.148000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://stackoverflow.com/questions/61331681/what-do-confidence-scores-mean-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:341.334000px;bottom:424.440000px;width:182.148000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://stackoverflow.com/questions/61331681/what-do-confidence-scores-mean-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:407.640000px;width:310.408000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://stackoverflow.com/questions/61331681/what-do-confidence-scores-mean-in-speech-recognition"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:407.640000px;width:310.408000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.lseg.com/content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-research-paper.pdf"><div class="d m1" style="border-style:none;position:absolute;left:388.625000px;bottom:384.840000px;width:111.402000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.lseg.com/content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-research-paper.pdf"><div class="d m1" style="border-style:none;position:absolute;left:388.625000px;bottom:384.840000px;width:111.402000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.lseg.com/content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-research-paper.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:368.040000px;width:426.160000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.lseg.com/content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-research-paper.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:368.040000px;width:426.160000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.lseg.com/content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-research-paper.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:351.240000px;width:86.861000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.lseg.com/content/dam/data-analytics/en_us/documents/white-papers/lseg-itg-automatic-transcript-research-paper.pdf"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:351.240000px;width:86.861000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://waywithwords.net/resource/transcription-accuracy-best-practices/"><div class="d m1" style="border-style:none;position:absolute;left:381.389000px;bottom:328.440000px;width:128.259000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://waywithwords.net/resource/transcription-accuracy-best-practices/"><div class="d m1" style="border-style:none;position:absolute;left:381.389000px;bottom:328.440000px;width:128.259000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://waywithwords.net/resource/transcription-accuracy-best-practices/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:311.640000px;width:221.143000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://waywithwords.net/resource/transcription-accuracy-best-practices/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:311.640000px;width:221.143000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.04927v3"><div class="d m1" style="border-style:none;position:absolute;left:397.281000px;bottom:288.840000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.04927v3"><div class="d m1" style="border-style:none;position:absolute;left:397.281000px;bottom:288.840000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.04927v3"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:272.040000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2406.04927v3"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:272.040000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.assemblyai.com/blog/how-accurate-speech-to-text"><div class="d m1" style="border-style:none;position:absolute;left:332.914000px;bottom:249.240000px;width:193.631000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.assemblyai.com/blog/how-accurate-speech-to-text"><div class="d m1" style="border-style:none;position:absolute;left:332.914000px;bottom:249.240000px;width:193.631000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.assemblyai.com/blog/how-accurate-speech-to-text"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:232.440000px;width:108.162000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.assemblyai.com/blog/how-accurate-speech-to-text"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:232.440000px;width:108.162000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2505.10975v1"><div class="d m1" style="border-style:none;position:absolute;left:410.857000px;bottom:209.640000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2505.10975v1"><div class="d m1" style="border-style:none;position:absolute;left:410.857000px;bottom:209.640000px;width:112.730000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2505.10975v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:192.840000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/html/2505.10975v1"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:192.840000px;width:64.535000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://krisp.ai/blog/speech-to-text-apis-key-players-and-innovations-in-2024/"><div class="d m1" style="border-style:none;position:absolute;left:390.759000px;bottom:170.040000px;width:139.116000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://krisp.ai/blog/speech-to-text-apis-key-players-and-innovations-in-2024/"><div class="d m1" style="border-style:none;position:absolute;left:390.759000px;bottom:170.040000px;width:139.116000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://krisp.ai/blog/speech-to-text-apis-key-players-and-innovations-in-2024/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:153.240000px;width:231.894000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://krisp.ai/blog/speech-to-text-apis-key-players-and-innovations-in-2024/"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:153.240000px;width:231.894000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/pii/S0165178125003385"><div class="d m1" style="border-style:none;position:absolute;left:374.595000px;bottom:130.440000px;width:153.411000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/pii/S0165178125003385"><div class="d m1" style="border-style:none;position:absolute;left:374.595000px;bottom:130.440000px;width:153.411000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/pii/S0165178125003385"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:113.640000px;width:186.541000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://www.sciencedirect.com/science/article/pii/S0165178125003385"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:113.640000px;width:186.541000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://galileo.ai/blog/best-real-time-speech-to-text-tools"><div class="d m1" style="border-style:none;position:absolute;left:351.378000px;bottom:90.839800px;width:177.872000px;height:16.800200px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://galileo.ai/blog/best-real-time-speech-to-text-tools"><div class="d m1" style="border-style:none;position:absolute;left:351.378000px;bottom:90.839800px;width:177.872000px;height:16.800200px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://galileo.ai/blog/best-real-time-speech-to-text-tools"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:74.039800px;width:92.898000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://galileo.ai/blog/best-real-time-speech-to-text-tools"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:74.039800px;width:92.898000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
<div id="pff" class="pf w0 h0" data-page-no="f"><div class="pc pcf w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x38 h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">Method and system for correcting speech-to-text auto-transcription ... <span class="fc3">https://</span></div><div class="t m0 x38 h4 y220 ff2 fs2 fc3 sc0 ls0 ws0">patents.google.com/patent/US20200160866A1/en</div><div class="t m0 x38 h4 y221 ff2 fs2 fc0 sc0 ls0 ws0">Prompt-tuning in ASR systems for efficient domain-adaptation - arXiv <span class="fc3">https://arxiv.org/abs/</span></div><div class="t m0 x38 h4 y222 ff2 fs2 fc3 sc0 ls0 ws0">2110.06502</div><div class="t m0 x3a h4 y21f ff2 fs2 fc0 sc0 ls0 ws0">56. </div><div class="t m0 x3a h4 y221 ff2 fs2 fc0 sc0 ls0 ws0">57. </div><a class="l" href="https://patents.google.com/patent/US20200160866A1/en"><div class="d m1" style="border-style:none;position:absolute;left:404.870000px;bottom:768.840000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://patents.google.com/patent/US20200160866A1/en"><div class="d m1" style="border-style:none;position:absolute;left:404.870000px;bottom:768.840000px;width:38.253000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://patents.google.com/patent/US20200160866A1/en"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:238.019000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://patents.google.com/patent/US20200160866A1/en"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:752.040000px;width:238.019000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2110.06502"><div class="d m1" style="border-style:none;position:absolute;left:408.468000px;bottom:729.240000px;width:106.478000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2110.06502"><div class="d m1" style="border-style:none;position:absolute;left:408.468000px;bottom:729.240000px;width:106.478000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2110.06502"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:712.440000px;width:53.279000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://arxiv.org/abs/2110.06502"><div class="d m1" style="border-style:none;position:absolute;left:77.250000px;bottom:712.440000px;width:53.279000px;height:16.800000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.000000,0.000000,0.000000,1.000000,0.000000,0.000000]}'></div></div>
|
|
</div>
|
|
<div class="loading-indicator">
|
|
<img alt="" src=""/>
|
|
</div>
|
|
</body>
|
|
</html>
|