### Updated Epic 4 Documentation - Enhanced Story 4.3: Multi-video Analysis with Multi-Agent System - Three perspective agents (Technical, Business, User) - Synthesis agent for unified summaries - Integration with existing AI ecosystem - Increased effort from 28 to 40 hours - Enhanced Story 4.4: Custom Models & Enhanced Markdown Export - Executive summary generation (2-3 paragraphs) - Timestamped sections with [HH:MM:SS] format - Enhanced markdown structure with table of contents - Increased effort from 24 to 32 hours - Enhanced Story 4.6: RAG-Powered Video Chat with ChromaDB - ChromaDB vector database integration - RAG implementation using existing test patterns - Chat interface with timestamp source references - DeepSeek integration for AI responses ### Epic Effort Updates - Total Epic 4 effort: 126 → 146 hours - Remaining work: 72 → 92 hours - Implementation timeline extended to 4-5 weeks 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com> |
||
|---|---|---|
| .. | ||
| README.md | ||
| __init__.py | ||
| callback.py | ||
| components.py | ||
| contact.py | ||
| datatype.py | ||
| discriminator.py | ||
| encoding.py | ||
| example.py | ||
| external_documentation.py | ||
| header.py | ||
| info.py | ||
| license.py | ||
| link.py | ||
| media_type.py | ||
| oauth_flow.py | ||
| oauth_flows.py | ||
| open_api.py | ||
| operation.py | ||
| parameter.py | ||
| path_item.py | ||
| paths.py | ||
| reference.py | ||
| request_body.py | ||
| response.py | ||
| responses.py | ||
| schema.py | ||
| security_requirement.py | ||
| security_scheme.py | ||
| server.py | ||
| server_variable.py | ||
| tag.py | ||
| util.py | ||
| xml.py | ||
README.md
OpenAPI v3.0 schema classes
Alias
Due to the reserved words in python and pydantic, the following fields are used with alias feature provided by pydantic:
| Class | Field name in the class | Alias (as in OpenAPI spec) |
|---|---|---|
| Header* | param_in | in |
| MediaType | media_type_schema | schema |
| Parameter | param_in | in |
| Parameter | param_schema | schema |
| PathItem | ref | $ref |
| Reference | ref | $ref |
| SecurityScheme | security_scheme_in | in |
| Schema | schema_format | format |
| Schema | schema_not | not |
The "in" field in Header object is actually a constant (
{"in": "header"}).
For convenience of object creation, the classes mentioned in above have configured
allow_population_by_field_name=True(Pydantic V1) orpopulate_by_name=True(Pydantic V2).Reference: Pydantic's Model Config
Non-pydantic schema types
Due to the constriants of python typing structure (not able to handle dynamic field names),
the following schema classes are actually just a typing of Dict:
| Schema Type | Implementation |
|---|---|
| Callback | Callback = Dict[str, PathItem] |
| Paths | Paths = Dict[str, PathItem] |
| Responses | Responses = Dict[str, Union[Response, Reference]] |
| SecurityRequirement | SecurityRequirement = Dict[str, List[str]] |
On creating such schema instances, please use python's dict type instead to instantiate.