directus-task-management/docs/architecture/performance-and-scalability...

20 lines
953 B
Markdown

# Performance and Scalability Design
## Database Optimization
- **Indexing Strategy**: Composite indexes on frequently queried combinations
- **Partitioning**: Tasks partitioned by project and date for large datasets
- **Caching Layer**: Redis cache for frequently accessed task data
- **Query Optimization**: GraphQL query complexity limits and batching
## API Performance
- **Pagination**: Cursor-based pagination for large result sets
- **Field Selection**: GraphQL field selection to minimize data transfer
- **Caching**: HTTP caching headers and ETags for unchanged data
- **Rate Limiting**: Per-user and per-agent rate limiting
## Integration Performance
- **Async Processing**: Background jobs for heavy operations (sync, reports)
- **Batch Operations**: Bulk APIs for multiple task operations
- **Event-Driven Updates**: WebSocket notifications for real-time updates
- **Circuit Breakers**: Fallback strategies for external system failures