directus-task-management/stories/6.3.story.md

223 lines
8.4 KiB
Markdown

# Story 6.3: Build Context Management System
## Story Information
- **Epic/Task**: Task 6 - Develop AI Integration Layer
- **Story Number**: 6.3
- **Title**: Build Context Management System
- **Status**: Ready
- **Complexity**: High
- **Priority**: Medium
- **Dependencies**: Tasks 6.1, 6.2 (6.1 completed, 6.2 ready)
## Story Statement
As the Directus Task Management system, I need a robust context management system that maintains conversation history, tracks user preferences, manages project-specific context, and enables intelligent context-aware responses so that AI agents can provide relevant and consistent assistance across multiple interactions and sessions.
## Acceptance Criteria
1. [ ] Context storage system persists conversation history across sessions
2. [ ] User preference tracking maintains individual settings and patterns
3. [ ] Project context management links tasks to relevant project information
4. [ ] Session management handles multiple concurrent user sessions
5. [ ] Context retrieval achieves sub-100ms response time for recent contexts
6. [ ] Memory pruning prevents unlimited context growth (configurable limits)
7. [ ] Context versioning allows rollback to previous states
8. [ ] Privacy controls enable users to manage their stored context
9. [ ] Context export/import functionality for backup and migration
10. [ ] Integration tests validate context persistence and retrieval
## Dev Notes
### Architecture Context References
- **[Source: Story 6.1]** - AI Task Service with context tracking implemented
- **[Source: architecture.md#task_ai_contexts]** - Context storage schema defined
- **[Source: Story 6.2]** - NLP system will generate context-rich data
### Previous Story Insights
- Story 6.1: Established `TaskAIContextEntity` for storing AI context
- LangChain memory management patterns already implemented
- Redis caching available for fast context retrieval
- Token usage tracking helps manage context size
### Context Management Architecture
**Core Components**:
```typescript
interface ContextManagementSystem {
// Storage layer
contextStore: ContextStorageService;
// Memory management
conversationMemory: ConversationMemoryService;
workingMemory: WorkingMemoryService;
longTermMemory: LongTermMemoryService;
// Retrieval and search
contextRetriever: ContextRetrievalService;
semanticSearch: SemanticSearchService;
// Lifecycle management
contextLifecycle: ContextLifecycleService;
pruningEngine: MemoryPruningService;
}
```
**Context Types**:
- **Conversation Context**: Chat history, Q&A pairs, command history
- **User Context**: Preferences, patterns, frequently used features
- **Project Context**: Active projects, task relationships, dependencies
- **System Context**: Current state, active workflows, pending operations
- **Temporal Context**: Time-based relevance, deadline awareness
### Memory Hierarchy
1. **Working Memory** (Redis): Active session, last 10 interactions
2. **Short-term Memory** (PostgreSQL): Recent 7 days, frequently accessed
3. **Long-term Memory** (PostgreSQL + compression): Historical data, searchable
4. **Archive** (S3/File storage): Exported contexts, backups
### File Locations
Based on existing project structure:
- **Context Services**: `src/services/context/` - Context management services
- **Memory Services**: `src/services/context/memory/` - Memory implementations
- **Storage**: `src/services/context/storage/` - Storage adapters
- **Retrieval**: `src/services/context/retrieval/` - Retrieval services
- **Tests**: `tests/services/context/` - Context service tests
### Technical Constraints
- Must integrate with existing TaskAIContextEntity
- Maintain sub-100ms retrieval for active contexts
- Implement GDPR-compliant data management
- Use existing Redis and PostgreSQL infrastructure
- Handle concurrent multi-user sessions
- Respect token limits for AI models
### Testing Requirements
- Unit tests for each context component
- Performance tests for retrieval speed
- Concurrency tests for multi-user scenarios
- Memory leak tests for long-running sessions
- Data integrity tests for persistence
- Privacy compliance tests
## Tasks / Subtasks
### Task 1: Set up Context Management Infrastructure (AC: 1)
- [ ] Create `src/services/context/context-management.service.ts`
- [ ] Define context interfaces and types
- [ ] Set up context configuration with environment variables
- [ ] Implement base context storage adapter pattern
- [ ] Add context-specific error handling
### Task 2: Implement Conversation Memory Service (AC: 1, 4)
- [ ] Create `src/services/context/memory/conversation-memory.service.ts`
- [ ] Implement conversation history tracking
- [ ] Add message pairing (user input + AI response)
- [ ] Create session isolation for concurrent users
- [ ] Implement conversation summarization for long chats
### Task 3: Build Working Memory System (AC: 5)
- [ ] Create `src/services/context/memory/working-memory.service.ts`
- [ ] Implement Redis-based fast memory store
- [ ] Add LRU cache for most recent contexts
- [ ] Create memory snapshots for persistence
- [ ] Implement memory merge strategies
### Task 4: Develop Long-term Memory Service (AC: 1, 6)
- [ ] Create `src/services/context/memory/long-term-memory.service.ts`
- [ ] Implement PostgreSQL storage with compression
- [ ] Add memory indexing for fast retrieval
- [ ] Create memory pruning algorithms
- [ ] Implement importance scoring for retention
### Task 5: Create Context Retrieval System (AC: 5)
- [ ] Create `src/services/context/retrieval/context-retrieval.service.ts`
- [ ] Implement multi-tier retrieval strategy
- [ ] Add semantic similarity search using embeddings
- [ ] Create relevance ranking algorithms
- [ ] Implement context aggregation from multiple sources
### Task 6: Build User Preference Tracking (AC: 2)
- [ ] Create `src/services/context/user-preference.service.ts`
- [ ] Implement preference learning from interactions
- [ ] Add pattern recognition for user behavior
- [ ] Create preference persistence and retrieval
- [ ] Implement preference-based customization
### Task 7: Implement Project Context Management (AC: 3)
- [ ] Create `src/services/context/project-context.service.ts`
- [ ] Link tasks to project contexts
- [ ] Implement project state tracking
- [ ] Add cross-project context sharing
- [ ] Create project context inheritance
### Task 8: Add Context Versioning System (AC: 7)
- [ ] Create `src/services/context/versioning/context-version.service.ts`
- [ ] Implement version tracking for context changes
- [ ] Add rollback functionality
- [ ] Create diff generation between versions
- [ ] Implement version pruning policies
### Task 9: Implement Privacy Controls (AC: 8)
- [ ] Create `src/services/context/privacy/privacy-control.service.ts`
- [ ] Add user consent management
- [ ] Implement context deletion on request
- [ ] Create anonymization functions
- [ ] Add audit logging for privacy operations
### Task 10: Build Export/Import System (AC: 9)
- [ ] Create `src/services/context/migration/export-import.service.ts`
- [ ] Implement context export to JSON/CSV
- [ ] Add import with validation
- [ ] Create backup scheduling
- [ ] Implement migration between systems
### Task 11: Create Context API Endpoints
- [ ] Add GET `/api/context/conversation/:sessionId`
- [ ] Add POST `/api/context/save`
- [ ] Add DELETE `/api/context/clear/:userId`
- [ ] Add GET `/api/context/export/:userId`
- [ ] Implement proper authentication and authorization
### Task 12: Write Tests (AC: 10)
- [ ] Create unit tests for memory services
- [ ] Create integration tests for context persistence
- [ ] Add performance tests for retrieval
- [ ] Create concurrency tests
- [ ] Achieve 80% code coverage
### Task 13: Documentation and Monitoring
- [ ] Create context management guide
- [ ] Add monitoring metrics for memory usage
- [ ] Document privacy compliance
- [ ] Create troubleshooting guide
- [ ] Add performance tuning documentation
## Project Structure Notes
- Extends AI infrastructure from Stories 6.1 and 6.2
- Uses existing Redis and PostgreSQL setup
- Maintains TypeORM entity patterns
- Integrates with LangChain memory management
## Dev Agent Record
*To be filled by implementing agent*
### File List
**Created:**
-
**Modified:**
-
### Implementation Notes
*To be filled during implementation*
### Challenges Encountered
*To be filled during implementation*
### Technical Decisions
*To be filled during implementation*
### Completion Notes
*To be filled upon completion*
---
*Story created by: Bob (Scrum Master)
Date: 2025-08-12*