trax/docs/reports/01-repository-inventory.md

170 lines
6.2 KiB
Markdown

# Checkpoint 1: Repository Inventory Report
## Current State Analysis - Trax Project
### 1. Project Structure
The Trax project is currently a **minimal skeleton** with uv package management properly configured.
#### What Exists ✅
- **uv Configuration**: Proper `pyproject.toml` with uv tooling
- **Documentation**: Basic `CLAUDE.md` (97 lines) and `AGENTS.md` (163 lines) - both well under 600 LOC limit
- **Config System**: Centralized configuration inheriting from root `.env`
- **Testing Setup**: pytest with coverage configured
- **Code Quality**: Black, Ruff, MyPy configured with strict settings
- **Python 3.11+**: Modern Python with type checking
- **Virtual Environment**: `.venv` directory configured
#### What's Missing ❌
- No actual media processing code yet
- No transcript services implemented
- No caching layer
- No database/models
- No API endpoints
- No export functionality
- No batch processing system
### 2. Key Components to Migrate from YouTube Summarizer
Based on analysis and priorities, here are the critical components to bring over:
#### 🔥 Priority 1: Caching Architecture
**90% cost reduction achieved in YouTube Summarizer**
- **Multi-layer caching system**:
- EmbeddingCacheService (24h TTL, LZ4 compression)
- MultiAgentCacheService (7d TTL, $0.015/analysis saved)
- RAGQueryCacheService (6h TTL, 2+ second savings)
- PromptComplexityCacheService (30d TTL, 95% accuracy)
- **UnifiedCacheOrchestrator** for cross-cache optimization
- **SQLite-based** with connection pooling
- **Smart cache warming** and resource allocation
#### 🎯 Priority 2: Transcription Service
**20-70x faster transcription achieved**
- **FasterWhisperTranscriptService** with M3 optimizations
- distil-large-v3 model (best speed/accuracy tradeoff)
- Smart chunking for large files (10-minute segments)
- Audio preprocessing (16kHz mono conversion)
- VAD (Voice Activity Detection) optimization
- **Enhanced transcript storage** with compression (68.6% space savings)
- **YouTube integration** with fallback strategies
- **Batch processing** support
#### 📦 Priority 3: Export & Formatting
**Critical for data persistence**
- **Multi-format export** (SRT, VTT, TXT, JSON, PDF)
- **Template-driven formatting** with Jinja2
- **Batch export system** for multiple files
- **Professional formatting** with metadata
- **Safe filename generation** with collision avoidance
#### ⚡ Priority 4: Performance Optimizations
**Essential patterns that worked**
- **Database Registry Pattern** (prevents SQLAlchemy conflicts)
- **Async pipeline patterns** throughout
- **Connection pooling** for database and external services
- **Smart compression** (68.6% space savings for transcripts)
- **Protocol-based design** for component swapping
### 3. Technical Debt & Failed Patterns to Avoid
#### ❌ Patterns That Failed
- **React Frontend Complexity**: Eventually decommissioned in favor of headless API
- **Simultaneous Frontend/Backend Development**: Caused integration issues
- **Over-engineering**: Features without clear value added complexity
- **Documentation Bloat**: Grew beyond 600 LOC limits causing context issues
- **Mock-heavy Testing**: Unrealistic test scenarios
- **Streaming Transcription**: Unreliable, download-first approach won
#### ✅ Patterns That Worked
- **Backend-first development**: Get data layer right before UI
- **Database modification checklist**: Prevented breaking changes
- **Test runner system**: 229 tests with 0.2s discovery time
- **Registry pattern for SQLAlchemy**: Solved relationship conflicts
- **Multi-layer caching**: Massive cost and performance benefits
- **Real test files**: Caught actual edge cases
- **Protocol-based services**: Easy refactoring and swapping
### 4. Migration Risk Assessment
#### Low Risk Components ✅
- **Config system**: Already compatible with uv and inheritance model
- **Caching services**: Self-contained, easy to port
- **Export functionality**: Modular design, simple migration
- **Testing patterns**: Can adopt test runner system directly
#### Medium Risk Components ⚠️
- **Transcription service**: Needs audio dependencies (FFmpeg, etc.)
- **Database patterns**: Requires Alembic setup and careful migration
- **Batch processing**: Needs queue design from scratch
#### High Risk Components ❌
- None identified - starting fresh avoids legacy issues
### 5. Configuration Analysis
Current `src/config.py` provides:
- Centralized configuration with root `.env` inheritance
- API key management for multiple AI services
- Path management for project directories
- Validation methods for required keys
- Service availability detection
**Ready for Extension** with:
- Database configuration
- Media processing settings
- Transcription parameters
- Caching configuration
- Export paths
### 6. Development Environment Status
| Component | Status | Action Needed |
|-----------|--------|--------------|
| Python 3.11+ | ✅ Ready | None |
| uv package manager | ✅ Configured | Install dependencies |
| PostgreSQL | ❌ Not setup | Install and configure |
| FFmpeg | ❌ Not verified | Install for audio processing |
| Test infrastructure | ⚠️ Basic | Add real test files |
| CI/CD | ❌ None | Setup GitHub Actions |
### 7. Immediate Requirements
To begin development, we need:
1. **Dependencies Installation**:
- Core: `sqlalchemy`, `alembic`, `psycopg2-binary`
- Transcription: `faster-whisper`, `yt-dlp`, `ffmpeg-python`
- AI: `openai` (for DeepSeek), `aiohttp`
- Testing: Real audio/video test files
2. **Directory Structure**:
- `src/services/` for business logic
- `src/models/` for database models
- `src/agents/rules/` for consistency rules
- `tests/fixtures/` for real test files
3. **Database Setup**:
- PostgreSQL installation
- Initial schema design
- Alembic configuration
### Summary
**Current State**: Trax is a clean skeleton with proper uv configuration, ready for development.
**Migration Path**: Clear path exists for migrating priority components from YouTube Summarizer.
**No Blocking Issues**: No significant technical debt or conflicts identified.
**Ready to Proceed**: With systematic development following the established patterns.
---
*Generated: 2024*
*Status: COMPLETE*
*Next: Historical Context Report*