611 lines
20 KiB
Markdown
611 lines
20 KiB
Markdown
# Story 4.1: Dual Transcript Options - Implementation Plan
|
|
|
|
## Overview
|
|
|
|
This implementation plan details the step-by-step approach to implement dual transcript options (YouTube + Whisper) in the YouTube Summarizer project, leveraging existing proven Whisper integration from archived projects.
|
|
|
|
**Story**: 4.1 - Dual Transcript Options (YouTube + Whisper)
|
|
**Estimated Effort**: 22 hours
|
|
**Priority**: High 🔥
|
|
**Target Completion**: 3-4 development days
|
|
|
|
## Prerequisites Analysis
|
|
|
|
### Current Codebase Status ✅
|
|
|
|
**Backend Dependencies Available**:
|
|
- FastAPI, Pydantic, SQLAlchemy - Core framework ready
|
|
- Anthropic API integration - AI summarization ready
|
|
- Enhanced transcript service - Architecture foundation exists
|
|
- Video download service - Audio extraction capability ready
|
|
- WebSocket infrastructure - Real-time updates ready
|
|
|
|
**Frontend Dependencies Available**:
|
|
- React 18, TypeScript, Vite - Modern frontend ready
|
|
- shadcn/ui, Radix UI components - UI components available
|
|
- TanStack Query - State management ready
|
|
- Admin page infrastructure - Testing environment ready
|
|
|
|
**Missing Dependencies to Add**:
|
|
```bash
|
|
# Backend requirements additions
|
|
openai-whisper==20231117
|
|
torch>=2.0.0
|
|
librosa==0.10.1
|
|
pydub==0.25.1
|
|
soundfile==0.12.1
|
|
|
|
# System dependency (Docker/local)
|
|
ffmpeg
|
|
```
|
|
|
|
### Architecture Integration Points
|
|
|
|
**Existing Services to Modify**:
|
|
1. `backend/services/enhanced_transcript_service.py` - Replace MockWhisperService
|
|
2. `backend/api/transcript.py` - Add dual transcript endpoints
|
|
3. `frontend/src/components/forms/SummarizeForm.tsx` - Add transcript selector
|
|
4. Database models - Add transcript metadata fields
|
|
|
|
**New Components to Create**:
|
|
1. `backend/services/whisper_transcript_service.py` - Real Whisper integration
|
|
2. `frontend/src/components/TranscriptSelector.tsx` - Source selection UI
|
|
3. `frontend/src/components/TranscriptComparison.tsx` - Quality comparison UI
|
|
|
|
## Task Breakdown with Time Estimates
|
|
|
|
### Phase 1: Backend Foundation (8 hours)
|
|
|
|
#### Task 1.1: Copy and Adapt TranscriptionService (3 hours)
|
|
**Objective**: Integrate proven Whisper service from archived project
|
|
|
|
**Subtasks**:
|
|
- [x] **Copy source code** (30 min)
|
|
```bash
|
|
cp archived_projects/personal-ai-assistant-v1.1.0/src/services/transcription_service.py \
|
|
apps/youtube-summarizer/backend/services/whisper_transcript_service.py
|
|
```
|
|
|
|
- [ ] **Remove podcast dependencies** (45 min)
|
|
- Remove `PodcastEpisode`, `PodcastTranscript` imports
|
|
- Remove repository dependency injection
|
|
- Simplify constructor to not require database repository
|
|
|
|
- [ ] **Adapt for YouTube context** (60 min)
|
|
- Update `transcribe_episode()` → `transcribe_audio_file()`
|
|
- Modify segment storage to return data instead of database writes
|
|
- Update error handling for YouTube-specific scenarios
|
|
|
|
- [ ] **Add async compatibility** (45 min)
|
|
- Wrap synchronous Whisper calls in asyncio.run_in_executor()
|
|
- Update method signatures to async/await pattern
|
|
- Test async integration with existing services
|
|
|
|
**Deliverable**: Working `WhisperTranscriptService` class
|
|
|
|
#### Task 1.2: Update Dependencies and Environment (2 hours)
|
|
**Objective**: Add Whisper dependencies and test environment setup
|
|
|
|
**Subtasks**:
|
|
- [ ] **Update requirements.txt** (15 min)
|
|
```bash
|
|
# Add to backend/requirements.txt
|
|
openai-whisper==20231117
|
|
torch>=2.0.0
|
|
librosa==0.10.1
|
|
pydub==0.25.1
|
|
soundfile==0.12.1
|
|
```
|
|
|
|
- [ ] **Update Docker configuration** (45 min)
|
|
```dockerfile
|
|
# Add to backend/Dockerfile
|
|
RUN apt-get update && apt-get install -y ffmpeg
|
|
RUN pip install openai-whisper torch librosa pydub soundfile
|
|
```
|
|
|
|
- [ ] **Test Whisper model download** (30 min)
|
|
- Test "small" model download (~244MB)
|
|
- Verify CUDA detection works (if available)
|
|
- Add model caching directory configuration
|
|
|
|
- [ ] **Environment configuration** (30 min)
|
|
```bash
|
|
# Add to .env
|
|
WHISPER_MODEL_SIZE=small
|
|
WHISPER_DEVICE=auto
|
|
WHISPER_MODEL_CACHE=/tmp/whisper_models
|
|
```
|
|
|
|
**Deliverable**: Environment ready for Whisper integration
|
|
|
|
#### Task 1.3: Replace MockWhisperService (3 hours)
|
|
**Objective**: Integrate real Whisper service into existing enhanced transcript service
|
|
|
|
**Subtasks**:
|
|
- [ ] **Update EnhancedTranscriptService** (90 min)
|
|
```python
|
|
# In enhanced_transcript_service.py
|
|
from .whisper_transcript_service import WhisperTranscriptService
|
|
|
|
# Replace MockWhisperService instantiation
|
|
self.whisper_service = WhisperTranscriptService(
|
|
model_size=os.getenv('WHISPER_MODEL_SIZE', 'small')
|
|
)
|
|
```
|
|
|
|
- [ ] **Update dependency injection** (30 min)
|
|
- Modify `main.py` service initialization
|
|
- Update FastAPI dependency functions
|
|
- Ensure proper service lifecycle management
|
|
|
|
- [ ] **Test integration** (60 min)
|
|
- Unit test with sample audio file
|
|
- Integration test with video download service
|
|
- Verify transcript quality and timing
|
|
|
|
**Deliverable**: Working Whisper integration in existing service
|
|
|
|
### Phase 2: API Enhancement (4 hours)
|
|
|
|
#### Task 2.1: Create Dual Transcript Service (2 hours)
|
|
**Objective**: Implement service for handling dual transcript extraction
|
|
|
|
**Subtasks**:
|
|
- [ ] **Create DualTranscriptService class** (60 min)
|
|
```python
|
|
class DualTranscriptService(EnhancedTranscriptService):
|
|
async def extract_dual_transcripts(self, video_id: str) -> Dict[str, TranscriptResult]:
|
|
# Parallel processing of YouTube and Whisper
|
|
youtube_task = self._extract_youtube_transcript(video_id)
|
|
whisper_task = self._extract_whisper_transcript(video_id)
|
|
|
|
results = await asyncio.gather(
|
|
youtube_task, whisper_task, return_exceptions=True
|
|
)
|
|
return {'youtube': results[0], 'whisper': results[1]}
|
|
```
|
|
|
|
- [ ] **Implement quality comparison** (45 min)
|
|
- Word-by-word accuracy comparison algorithm
|
|
- Confidence score calculation
|
|
- Timing precision analysis
|
|
|
|
- [ ] **Add caching for dual results** (15 min)
|
|
- Cache YouTube and Whisper results separately
|
|
- Extended TTL for Whisper (more expensive to regenerate)
|
|
|
|
**Deliverable**: DualTranscriptService with parallel processing
|
|
|
|
#### Task 2.2: Add New API Endpoints (2 hours)
|
|
**Objective**: Create API endpoints for transcript source selection
|
|
|
|
**Subtasks**:
|
|
- [ ] **Create transcript selection models** (30 min)
|
|
```python
|
|
class TranscriptOptionsRequest(BaseModel):
|
|
source: Literal['youtube', 'whisper', 'both'] = 'youtube'
|
|
whisper_model: Literal['tiny', 'base', 'small', 'medium'] = 'small'
|
|
language: str = 'en'
|
|
include_timestamps: bool = True
|
|
```
|
|
|
|
- [ ] **Add dual transcript endpoint** (60 min)
|
|
```python
|
|
@router.post("/api/transcripts/dual/{video_id}")
|
|
async def get_dual_transcripts(
|
|
video_id: str,
|
|
options: TranscriptOptionsRequest,
|
|
current_user: User = Depends(get_current_user)
|
|
) -> TranscriptComparisonResponse:
|
|
# Implementation
|
|
```
|
|
|
|
- [ ] **Update existing pipeline to use transcript options** (30 min)
|
|
- Modify `SummaryPipeline` to accept transcript source preference
|
|
- Update processing status to show transcript method
|
|
- Add transcript quality metrics to summary result
|
|
|
|
**Deliverable**: New API endpoints for transcript selection
|
|
|
|
### Phase 3: Database Schema Updates (2 hours)
|
|
|
|
#### Task 3.1: Extend Summary Model (1 hour)
|
|
**Objective**: Add fields for transcript metadata and quality tracking
|
|
|
|
**Subtasks**:
|
|
- [ ] **Create database migration** (30 min)
|
|
```sql
|
|
ALTER TABLE summaries
|
|
ADD COLUMN transcript_source VARCHAR(20),
|
|
ADD COLUMN transcript_quality_score FLOAT,
|
|
ADD COLUMN youtube_transcript TEXT,
|
|
ADD COLUMN whisper_transcript TEXT,
|
|
ADD COLUMN whisper_processing_time FLOAT,
|
|
ADD COLUMN transcript_comparison_data JSON;
|
|
```
|
|
|
|
- [ ] **Update Summary model** (20 min)
|
|
```python
|
|
# Add to backend/models/summary.py
|
|
transcript_source = Column(String(20)) # 'youtube', 'whisper', 'both'
|
|
transcript_quality_score = Column(Float)
|
|
youtube_transcript = Column(Text)
|
|
whisper_transcript = Column(Text)
|
|
whisper_processing_time = Column(Float)
|
|
transcript_comparison_data = Column(JSON)
|
|
```
|
|
|
|
- [ ] **Update repository methods** (10 min)
|
|
- Add methods for storing dual transcript data
|
|
- Add queries for transcript source filtering
|
|
|
|
**Deliverable**: Database schema ready for dual transcripts
|
|
|
|
#### Task 3.2: Add Performance Indexes (1 hour)
|
|
**Objective**: Optimize database queries for transcript operations
|
|
|
|
**Subtasks**:
|
|
- [ ] **Create performance indexes** (30 min)
|
|
```sql
|
|
CREATE INDEX idx_summaries_transcript_source ON summaries(transcript_source);
|
|
CREATE INDEX idx_summaries_quality_score ON summaries(transcript_quality_score);
|
|
CREATE INDEX idx_summaries_processing_time ON summaries(whisper_processing_time);
|
|
```
|
|
|
|
- [ ] **Test query performance** (20 min)
|
|
- Verify index usage with EXPLAIN queries
|
|
- Test filtering by transcript source
|
|
- Benchmark query times with sample data
|
|
|
|
- [ ] **Run migration and test** (10 min)
|
|
- Apply migration to development database
|
|
- Verify all fields accessible
|
|
- Test with sample data insertion
|
|
|
|
**Deliverable**: Optimized database schema
|
|
|
|
### Phase 4: Frontend Implementation (6 hours)
|
|
|
|
#### Task 4.1: Create TranscriptSelector Component (2 hours)
|
|
**Objective**: UI component for transcript source selection
|
|
|
|
**Subtasks**:
|
|
- [ ] **Create base component** (45 min)
|
|
```tsx
|
|
interface TranscriptSelectorProps {
|
|
value: TranscriptSource
|
|
onChange: (source: TranscriptSource) => void
|
|
estimatedDuration?: number
|
|
disabled?: boolean
|
|
}
|
|
|
|
export function TranscriptSelector({...props}: TranscriptSelectorProps) {
|
|
// Radio group implementation with visual indicators
|
|
}
|
|
```
|
|
|
|
- [ ] **Add processing time estimation** (30 min)
|
|
- Calculate Whisper processing time based on video duration
|
|
- Show cost/time comparison for each option
|
|
- Display clear indicators (Fast/Free vs Accurate/Slower)
|
|
|
|
- [ ] **Style and accessibility** (45 min)
|
|
- Implement with Radix UI RadioGroup
|
|
- Add proper ARIA labels and descriptions
|
|
- Visual icons and quality indicators
|
|
- Responsive design for mobile/desktop
|
|
|
|
**Deliverable**: TranscriptSelector component ready for integration
|
|
|
|
#### Task 4.2: Add to SummarizeForm (1 hour)
|
|
**Objective**: Integrate transcript selection into existing form
|
|
|
|
**Subtasks**:
|
|
- [ ] **Update SummarizeForm component** (30 min)
|
|
```tsx
|
|
// Add to existing form state
|
|
const [transcriptSource, setTranscriptSource] = useState<TranscriptSource>('youtube')
|
|
|
|
// Add to form submission
|
|
const handleSubmit = async (data) => {
|
|
await processVideo({
|
|
...data,
|
|
transcript_options: {
|
|
source: transcriptSource,
|
|
// other options
|
|
}
|
|
})
|
|
}
|
|
```
|
|
|
|
- [ ] **Update form validation** (15 min)
|
|
- Add transcript options to form schema
|
|
- Validate transcript source selection
|
|
- Handle form submission with new fields
|
|
|
|
- [ ] **Test integration** (15 min)
|
|
- Verify form works with new component
|
|
- Test all transcript source options
|
|
- Ensure admin page compatibility
|
|
|
|
**Deliverable**: Updated form with transcript selection
|
|
|
|
#### Task 4.3: Create TranscriptComparison Component (2 hours)
|
|
**Objective**: Side-by-side transcript quality comparison
|
|
|
|
**Subtasks**:
|
|
- [ ] **Create comparison UI** (75 min)
|
|
```tsx
|
|
interface TranscriptComparisonProps {
|
|
youtubeTranscript: TranscriptResult
|
|
whisperTranscript: TranscriptResult
|
|
onSelectTranscript: (source: TranscriptSource) => void
|
|
}
|
|
|
|
export function TranscriptComparison({...props}: TranscriptComparisonProps) {
|
|
// Side-by-side comparison with difference highlighting
|
|
}
|
|
```
|
|
|
|
- [ ] **Implement difference highlighting** (30 min)
|
|
- Word-level diff algorithm
|
|
- Visual indicators for additions/changes
|
|
- Quality metric displays
|
|
|
|
- [ ] **Add selection controls** (15 min)
|
|
- Buttons to choose which transcript to use for summary
|
|
- Quality score badges
|
|
- Processing time comparison
|
|
|
|
**Deliverable**: TranscriptComparison component
|
|
|
|
#### Task 4.4: Update Processing UI (1 hour)
|
|
**Objective**: Show transcript processing status and method
|
|
|
|
**Subtasks**:
|
|
- [ ] **Update ProgressTracker** (30 min)
|
|
- Add transcript source indicator
|
|
- Show different messages for Whisper vs YouTube processing
|
|
- Add estimated time remaining for Whisper
|
|
|
|
- [ ] **Update result display** (20 min)
|
|
- Show which transcript source was used
|
|
- Display quality metrics
|
|
- Add transcript comparison link if both available
|
|
|
|
- [ ] **Error handling** (10 min)
|
|
- Handle Whisper processing failures
|
|
- Show fallback notifications
|
|
- Provide retry options
|
|
|
|
**Deliverable**: Updated processing UI
|
|
|
|
### Phase 5: Testing and Integration (2 hours)
|
|
|
|
#### Task 5.1: Unit Tests (1 hour)
|
|
**Objective**: Comprehensive test coverage for new components
|
|
|
|
**Subtasks**:
|
|
- [ ] **Backend unit tests** (30 min)
|
|
```python
|
|
# backend/tests/unit/test_whisper_transcript_service.py
|
|
def test_whisper_transcription_accuracy()
|
|
def test_dual_transcript_comparison()
|
|
def test_automatic_fallback()
|
|
```
|
|
|
|
- [ ] **Frontend unit tests** (20 min)
|
|
```tsx
|
|
// frontend/src/components/__tests__/TranscriptSelector.test.tsx
|
|
describe('TranscriptSelector', () => {
|
|
test('shows processing time estimates')
|
|
test('handles source selection')
|
|
test('displays quality indicators')
|
|
})
|
|
```
|
|
|
|
- [ ] **API endpoint tests** (10 min)
|
|
- Test dual transcript endpoint
|
|
- Test transcript option validation
|
|
- Test error handling scenarios
|
|
|
|
**Deliverable**: >80% test coverage for new code
|
|
|
|
#### Task 5.2: Integration Testing (1 hour)
|
|
**Objective**: End-to-end workflow validation
|
|
|
|
**Subtasks**:
|
|
- [ ] **YouTube vs Whisper comparison test** (20 min)
|
|
- Process same video with both methods
|
|
- Verify quality differences
|
|
- Confirm timing accuracy
|
|
|
|
- [ ] **Admin page testing** (15 min)
|
|
- Test transcript selector in admin interface
|
|
- Verify no authentication required
|
|
- Test all transcript source options
|
|
|
|
- [ ] **Error scenario testing** (15 min)
|
|
- Test unavailable YouTube captions (fallback to Whisper)
|
|
- Test Whisper processing failure
|
|
- Test long video processing (chunking)
|
|
|
|
- [ ] **Performance testing** (10 min)
|
|
- Benchmark Whisper processing times
|
|
- Test parallel processing performance
|
|
- Verify cache effectiveness
|
|
|
|
**Deliverable**: All integration scenarios passing
|
|
|
|
## Risk Mitigation Strategies
|
|
|
|
### High Risk Items and Solutions
|
|
|
|
#### 1. Whisper Processing Time (HIGH)
|
|
**Risk**: Users abandon due to slow Whisper processing
|
|
**Mitigation**:
|
|
- Clear time estimates before processing starts
|
|
- Real-time progress updates during Whisper transcription
|
|
- Option to cancel long-running operations
|
|
- Default to "small" model for speed/accuracy balance
|
|
|
|
#### 2. Resource Consumption (MEDIUM)
|
|
**Risk**: High CPU/memory usage affects system performance
|
|
**Mitigation**:
|
|
- Implement processing queue to limit concurrent Whisper jobs
|
|
- Add resource monitoring and automatic throttling
|
|
- Use model caching to avoid reloading
|
|
- Provide CPU/GPU auto-detection
|
|
|
|
#### 3. Model Download Size (MEDIUM)
|
|
**Risk**: First-time model download delays (244MB for "small")
|
|
**Mitigation**:
|
|
- Pre-download model in Docker image
|
|
- Show download progress to user
|
|
- Graceful handling of network issues during download
|
|
- Fallback to smaller model if download fails
|
|
|
|
#### 4. Audio Quality Issues (LOW)
|
|
**Risk**: Poor audio quality reduces Whisper accuracy
|
|
**Mitigation**:
|
|
- Audio preprocessing (noise reduction, normalization)
|
|
- Quality assessment before transcription
|
|
- Clear messaging about audio quality limitations
|
|
- Fallback to YouTube captions for poor audio
|
|
|
|
### Technical Debt Management
|
|
|
|
#### Dependency Management
|
|
- Pin specific Whisper version for reproducibility
|
|
- Test compatibility with torch versions
|
|
- Document system requirements (FFmpeg)
|
|
- Provide clear installation instructions
|
|
|
|
#### Code Quality
|
|
- Maintain consistent async/await patterns
|
|
- Add comprehensive logging for debugging
|
|
- Document Whisper-specific configuration
|
|
- Follow existing project patterns and conventions
|
|
|
|
## Success Criteria and Validation
|
|
|
|
### Definition of Done Checklist
|
|
- [ ] Users can select between YouTube/Whisper/Both transcript options
|
|
- [ ] Real Whisper transcription integrated from archived codebase
|
|
- [ ] Processing time estimates accurate within 20%
|
|
- [ ] Quality comparison shows meaningful differences
|
|
- [ ] Automatic fallback works when YouTube captions unavailable
|
|
- [ ] All tests pass with >80% code coverage
|
|
- [ ] Performance acceptable (<2 minutes for 10-minute video with "small" model)
|
|
- [ ] UI provides clear feedback during processing
|
|
- [ ] Database properly stores transcript metadata and quality scores
|
|
- [ ] Admin page supports new transcript options without authentication
|
|
|
|
### Acceptance Testing Scenarios
|
|
1. **Standard Use Case**: Select Whisper for technical video, confirm accuracy improvement
|
|
2. **Comparison Mode**: Use "Compare Both" option, review side-by-side differences
|
|
3. **Fallback Scenario**: Process video without YouTube captions, verify Whisper fallback
|
|
4. **Long Video**: Process 30+ minute video, confirm chunking works properly
|
|
5. **Error Handling**: Test with corrupted audio, verify graceful error handling
|
|
|
|
### Performance Benchmarks
|
|
- **YouTube Transcript**: <5 seconds processing time
|
|
- **Whisper Small**: <2 minutes for 10-minute video
|
|
- **Memory Usage**: <2GB peak during transcription
|
|
- **Model Loading**: <30 seconds first load, <5 seconds cached
|
|
- **Accuracy Improvement**: >25% fewer word errors vs YouTube captions
|
|
|
|
## Development Environment Setup
|
|
|
|
### Local Development Steps
|
|
```bash
|
|
# 1. Update backend dependencies
|
|
cd apps/youtube-summarizer/backend
|
|
pip install -r requirements.txt
|
|
|
|
# 2. Install system dependencies
|
|
# macOS
|
|
brew install ffmpeg
|
|
# Ubuntu
|
|
sudo apt-get install ffmpeg
|
|
|
|
# 3. Test Whisper installation
|
|
python -c "import whisper; model = whisper.load_model('base'); print('✅ Whisper ready')"
|
|
|
|
# 4. Run database migrations
|
|
alembic upgrade head
|
|
|
|
# 5. Start services
|
|
python main.py # Backend (port 8000)
|
|
cd ../frontend && npm run dev # Frontend (port 3002)
|
|
```
|
|
|
|
### Testing Strategy
|
|
```bash
|
|
# Unit tests
|
|
pytest backend/tests/unit/test_whisper_* -v
|
|
|
|
# Integration tests
|
|
pytest backend/tests/integration/test_dual_transcript* -v
|
|
|
|
# Frontend tests
|
|
cd frontend && npm test
|
|
|
|
# End-to-end testing
|
|
# 1. Visit http://localhost:3002/admin
|
|
# 2. Test YouTube transcript option with: https://www.youtube.com/watch?v=dQw4w9WgXcQ
|
|
# 3. Test Whisper option with same video
|
|
# 4. Compare results and processing times
|
|
```
|
|
|
|
## Timeline and Milestones
|
|
|
|
### Week 1 (Day 1-2): Backend Foundation
|
|
- **Day 1**: Tasks 1.1-1.2 (Copy TranscriptionService, update dependencies)
|
|
- **Day 2**: Task 1.3 (Replace MockWhisperService), Task 2.1 (DualTranscriptService)
|
|
|
|
### Week 1 (Day 3): API and Database
|
|
- **Day 3**: Task 2.2 (API endpoints), Task 3.1-3.2 (Database schema)
|
|
|
|
### Week 2 (Day 4): Frontend Implementation
|
|
- **Day 4**: Task 4.1-4.2 (TranscriptSelector, form integration)
|
|
|
|
### Week 2 (Day 5): Frontend Completion and Testing
|
|
- **Day 5 Morning**: Task 4.3-4.4 (TranscriptComparison, processing UI)
|
|
- **Day 5 Afternoon**: Task 5.1-5.2 (Testing, integration validation)
|
|
|
|
### Delivery Schedule
|
|
- **Day 3 EOD**: Backend MVP ready for testing
|
|
- **Day 4 EOD**: Frontend components complete
|
|
- **Day 5 EOD**: Full Story 4.1 complete and tested
|
|
|
|
## Post-Implementation Tasks
|
|
|
|
### Monitoring and Observability
|
|
- [ ] Add metrics for transcript source usage patterns
|
|
- [ ] Monitor Whisper processing times and success rates
|
|
- [ ] Track user satisfaction with transcript quality
|
|
- [ ] Log resource usage patterns for optimization
|
|
|
|
### Documentation Updates
|
|
- [ ] Update API documentation with new endpoints
|
|
- [ ] Add user guide for transcript options
|
|
- [ ] Document deployment requirements (FFmpeg, model caching)
|
|
- [ ] Update troubleshooting guide
|
|
|
|
### Future Enhancements (Epic 4.2+)
|
|
- [ ] Support for additional Whisper models (medium, large)
|
|
- [ ] Multi-language transcription support
|
|
- [ ] Custom model fine-tuning capabilities
|
|
- [ ] Speaker identification integration
|
|
- [ ] Real-time transcription for live streams
|
|
|
|
---
|
|
|
|
**Implementation Plan Owner**: Development Team
|
|
**Reviewers**: Technical Lead, Product Owner
|
|
**Status**: Ready for Implementation
|
|
**Last Updated**: 2025-08-27
|
|
|
|
This implementation plan provides a comprehensive roadmap for implementing dual transcript options, leveraging proven Whisper integration while maintaining high code quality and user experience standards. |