20 KiB
CLAUDE.md - YouTube Summarizer
This file provides guidance to Claude Code (claude.ai/code) when working with the YouTube Summarizer project.
Project Overview
An AI-powered web application that automatically extracts, transcribes, and summarizes YouTube videos. The application supports multiple AI models (OpenAI, Anthropic, DeepSeek), provides various export formats, and includes intelligent caching for efficiency.
Status: Development in Progress - Authentication complete, core features ready for implementation
- Epic 1: Foundation & Core YouTube Integration (Stories 1.1-1.4 ✅ Complete, Story 1.5 📋 Ready)
- Epic 2: AI Summarization Engine (Stories 2.1-2.5 📋 All Created and Ready)
- Epic 3: User Authentication & Session Management (✅ Story 3.1-3.2 Complete, 📋 Story 3.3 Ready)
Quick Start Commands
# Development Setup
cd apps/youtube-summarizer
docker-compose up # Start full development environment
# Quick Testing (No Auth Required)
open http://localhost:3002/admin # Direct admin access - No login needed
# BMad Method Story Management
/BMad:agents:sm # Activate Scrum Master agent
*draft # Create next story
*story-checklist # Validate story quality
# Development Agent Implementation
/BMad:agents:dev # Activate Development agent
# Follow story specifications in docs/stories/
# Direct Development (without BMad agents)
source venv/bin/activate # Activate virtual environment
python backend/main.py # Run backend (port 8000)
cd frontend && npm run dev # Run frontend (port 3002)
# Testing (Comprehensive Test Runner)
./run_tests.sh run-unit --fail-fast # Fast unit tests (229 tests in ~0.2s)
./run_tests.sh run-all --coverage # Complete test suite with coverage
cd frontend && npm test # Frontend tests
# Git Operations
git add .
git commit -m "feat: implement story 1.2 - URL validation"
git push origin main
Architecture
YouTube Summarizer
├── Frontend (React + TypeScript)
│ ├── /admin - No-auth admin interface (TESTING)
│ ├── /dashboard - Protected summarizer interface
│ ├── /login - Authentication flow
│ └── /batch - Batch processing interface
├── API Layer (FastAPI)
│ ├── /api/summarize - Submit URL for summarization
│ ├── /api/summary/{id} - Retrieve summary
│ └── /api/export/{id} - Export in various formats
├── Service Layer
│ ├── YouTube Service - Transcript extraction
│ ├── AI Service - Summary generation (DeepSeek)
│ └── Cache Service - Performance optimization
└── Data Layer
├── SQLite/PostgreSQL - Summary storage
└── Redis (optional) - Caching layer
Testing & Development Access
Admin Page (No Authentication)
- URL:
http://localhost:3002/admin - Purpose: Direct access for testing and development
- Features: Complete YouTube Summarizer functionality without login
- Visual: Orange "Admin Mode" badge for clear identification
- Use Case: Quick testing, demos, development workflow
Protected Routes (Authentication Required)
- Dashboard:
http://localhost:3002/dashboard- Main app with user session - History:
http://localhost:3002/history- User's summary history - Batch:
http://localhost:3002/batch- Batch processing interface
Development Workflow - BMad Method
Story-Driven Development Process
Current Epic: Epic 3 - User Authentication & Session Management
Current Stories:
- ✅ Epic 1 - Foundation & Core YouTube Integration (Complete)
- ✅ Story 1.1: Project Setup and Infrastructure
- ✅ Story 1.2: YouTube URL Validation and Parsing
- ✅ Story 1.3: Transcript Extraction Service (with mocks)
- ✅ Story 1.4: Basic Web Interface
- ✅ Story 1.5: Video Download and Storage Service
- ✅ Epic 2 - AI Summarization Engine (Complete)
- ✅ Story 2.1-2.5: All AI pipeline and summarization features
- 🚀 Epic 3 - User Authentication & Session Management (Current)
- ✅ Story 3.1: User Authentication System (Backend Complete)
- 📝 Story 3.2: Frontend Authentication Integration (Ready for implementation)
1. Story Planning (Scrum Master)
# Activate Scrum Master agent
/BMad:agents:sm
*draft # Create next story in sequence
*story-checklist # Validate story completeness
2. Story Implementation (Development Agent)
# Activate Development agent
/BMad:agents:dev
# Review story file: docs/stories/{epic}.{story}.{name}.md
# Follow detailed Dev Notes and architecture references
# Implement all tasks and subtasks as specified
3. Implementation Locations
Based on architecture and story specifications:
- Backend API →
backend/api/ - Backend Services →
backend/services/ - Backend Models →
backend/models/ - Frontend Components →
frontend/src/components/ - Frontend Hooks →
frontend/src/hooks/ - Frontend API Client →
frontend/src/api/
4. Testing Implementation
# Backend testing (Test Runner - Fast Feedback)
./run_tests.sh run-unit --fail-fast # Ultra-fast unit tests (0.2s)
./run_tests.sh run-specific "test_video_service.py" # Test specific modules
./run_tests.sh run-integration # Integration & API tests
./run_tests.sh run-all --coverage --parallel # Complete suite with coverage
# Test Discovery & Validation
./run_tests.sh list --category unit # See available tests (229 found)
./scripts/validate_test_setup.py # Validate test environment
# Frontend testing (Vitest + RTL)
cd frontend && npm test
cd frontend && npm run test:coverage
# Manual testing
docker-compose up # Full stack
# Visit http://localhost:3000 (frontend)
# Visit http://localhost:8000/docs (API docs)
5. Story Completion
- Mark all tasks/subtasks complete in story file
- Update story status from "Draft" to "Done"
- Run story validation checklist
- Update epic progress tracking
Testing & Quality Assurance
Test Runner System
The project includes a production-ready test runner with 229 discovered unit tests and intelligent categorization.
# Fast feedback during development
./run_tests.sh run-unit --fail-fast # Ultra-fast unit tests (~0.2s)
./run_tests.sh run-all --coverage # Complete validation
cd frontend && npm test # Frontend tests
📖 Complete Testing Guide: See TESTING-INSTRUCTIONS.md for comprehensive testing standards, procedures, and troubleshooting.
Key Implementation Areas
YouTube Integration (src/services/youtube.py)
# Primary: youtube-transcript-api
from youtube_transcript_api import YouTubeTranscriptApi
# Fallback: yt-dlp for metadata
import yt_dlp
# Extract video ID from various URL formats
# Handle multiple subtitle languages
# Implement retry logic for failures
AI Summarization (src/services/summarizer.py)
# Multi-model support
class SummarizerService:
def __init__(self):
self.models = {
'openai': OpenAISummarizer(),
'anthropic': AnthropicSummarizer(),
'deepseek': DeepSeekSummarizer()
}
async def summarize(self, transcript, model='auto'):
# Implement model selection logic
# Handle token limits
# Generate structured summaries
Caching Strategy (src/services/cache.py)
# Cache at multiple levels:
# 1. Transcript cache (by video_id)
# 2. Summary cache (by video_id + model + params)
# 3. Export cache (by summary_id + format)
# Use hash for cache keys
import hashlib
def get_cache_key(video_id: str, model: str, params: dict) -> str:
key_data = f"{video_id}:{model}:{json.dumps(params, sort_keys=True)}"
return hashlib.sha256(key_data.encode()).hexdigest()
API Endpoint Patterns
FastAPI Best Practices
from fastapi import APIRouter, HTTPException, BackgroundTasks
from pydantic import BaseModel, HttpUrl
router = APIRouter(prefix="/api", tags=["summarization"])
class SummarizeRequest(BaseModel):
url: HttpUrl
model: str = "auto"
options: dict = {}
@router.post("/summarize")
async def summarize_video(
request: SummarizeRequest,
background_tasks: BackgroundTasks
):
# Validate URL
# Extract video ID
# Check cache
# Queue for processing if needed
# Return job ID for status checking
Database Schema
-- Main summaries table
CREATE TABLE summaries (
id UUID PRIMARY KEY,
video_id VARCHAR(20) NOT NULL,
video_title TEXT,
video_url TEXT NOT NULL,
transcript TEXT,
summary TEXT,
key_points JSONB,
chapters JSONB,
model_used VARCHAR(50),
processing_time FLOAT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- Cache for performance
CREATE INDEX idx_video_id ON summaries(video_id);
CREATE INDEX idx_created_at ON summaries(created_at);
Error Handling
class YouTubeError(Exception):
"""Base exception for YouTube-related errors"""
pass
class TranscriptNotAvailable(YouTubeError):
"""Raised when transcript cannot be extracted"""
pass
class AIServiceError(Exception):
"""Base exception for AI service errors"""
pass
class TokenLimitExceeded(AIServiceError):
"""Raised when content exceeds model token limit"""
pass
# Global error handler
@app.exception_handler(YouTubeError)
async def youtube_error_handler(request, exc):
return JSONResponse(
status_code=400,
content={"error": str(exc), "type": "youtube_error"}
)
Environment Variables
# Required
OPENAI_API_KEY=sk-... # At least one AI key required
ANTHROPIC_API_KEY=sk-ant-...
DEEPSEEK_API_KEY=sk-...
DATABASE_URL=sqlite:///./data/youtube_summarizer.db
SECRET_KEY=your-secret-key
# Optional but recommended
YOUTUBE_API_KEY=AIza... # For metadata and quota
REDIS_URL=redis://localhost:6379/0
RATE_LIMIT_PER_MINUTE=30
MAX_VIDEO_LENGTH_MINUTES=180
Testing Guidelines
Test Runner Integration
The project uses a comprehensive test runner system for efficient testing:
# Run specific test modules during development
./run_tests.sh run-specific "backend/tests/unit/test_youtube_service.py"
# Fast feedback loop (discovered 229 tests)
./run_tests.sh run-unit --fail-fast
# Comprehensive testing with coverage
./run_tests.sh run-all --coverage --reports html,json
Unit Test Structure
# tests/unit/test_youtube_service.py
import pytest
from unittest.mock import Mock, patch
from src.services.youtube import YouTubeService
@pytest.fixture
def youtube_service():
return YouTubeService()
@pytest.mark.unit # Test runner marker for categorization
def test_extract_video_id(youtube_service):
"""Test video ID extraction from various URL formats."""
urls = [
("https://youtube.com/watch?v=abc123", "abc123"),
("https://youtu.be/xyz789", "xyz789"),
("https://www.youtube.com/embed/qwe456", "qwe456")
]
for url, expected_id in urls:
assert youtube_service.extract_video_id(url) == expected_id
Integration Test Pattern
# tests/integration/test_api.py
import pytest
from fastapi.testclient import TestClient
from src.main import app
client = TestClient(app)
@pytest.mark.integration # Test runner marker for categorization
@pytest.mark.api
def test_summarize_endpoint():
"""Test video summarization API endpoint."""
response = client.post("/api/summarize", json={
"url": "https://youtube.com/watch?v=test123",
"model": "openai"
})
assert response.status_code == 200
assert "job_id" in response.json()
Test Runner Categories
The test runner automatically categorizes tests using markers and file patterns:
# Test markers for intelligent categorization
@pytest.mark.unit # Fast, isolated unit tests
@pytest.mark.integration # Database/API integration tests
@pytest.mark.auth # Authentication and security tests
@pytest.mark.api # API endpoint tests
@pytest.mark.pipeline # End-to-end pipeline tests
@pytest.mark.slow # Tests taking >5 seconds
# Run specific categories
# ./run_tests.sh run-integration # Runs integration + api marked tests
# ./run_tests.sh list --category unit # Shows all unit tests
Performance Optimization
- Async Everything: Use async/await for all I/O operations
- Background Tasks: Process summaries in background
- Caching Layers:
- Memory cache for hot data
- Database cache for persistence
- CDN for static exports
- Rate Limiting: Implement per-IP and per-user limits
- Token Optimization:
- Chunk long transcripts
- Use map-reduce for summaries
- Implement progressive summarization
Security Considerations
- Input Validation: Validate all YouTube URLs
- API Key Management: Use environment variables, never commit keys
- Rate Limiting: Prevent abuse and API exhaustion
- CORS Configuration: Restrict to known domains in production
- SQL Injection Prevention: Use parameterized queries
- XSS Protection: Sanitize all user inputs
- Authentication: Implement JWT for user sessions (Phase 3)
Common Issues and Solutions
Issue: Transcript Not Available
# Solution: Implement fallback chain
try:
transcript = await get_youtube_transcript(video_id)
except TranscriptNotAvailable:
# Try auto-generated captions
transcript = await get_auto_captions(video_id)
if not transcript:
# Use audio transcription as last resort
transcript = await transcribe_audio(video_id)
Issue: Token Limit Exceeded
# Solution: Implement chunking
def chunk_transcript(transcript, max_tokens=3000):
chunks = []
current_chunk = []
current_tokens = 0
for segment in transcript:
segment_tokens = count_tokens(segment)
if current_tokens + segment_tokens > max_tokens:
chunks.append(current_chunk)
current_chunk = [segment]
current_tokens = segment_tokens
else:
current_chunk.append(segment)
current_tokens += segment_tokens
if current_chunk:
chunks.append(current_chunk)
return chunks
Issue: Rate Limiting
# Solution: Implement exponential backoff
import asyncio
from typing import Optional
async def retry_with_backoff(
func,
max_retries: int = 3,
initial_delay: float = 1.0
) -> Optional[Any]:
delay = initial_delay
for attempt in range(max_retries):
try:
return await func()
except RateLimitError:
if attempt == max_retries - 1:
raise
await asyncio.sleep(delay)
delay *= 2 # Exponential backoff
Development Tips
- Start with Task 1: Setup and environment configuration
- Test Early: Write tests as you implement features
- Use Type Hints: Improve code quality and IDE support
- Document APIs: Use FastAPI's automatic documentation
- Log Everything: Implement comprehensive logging for debugging
- Cache Aggressively: Reduce API calls and improve response times
- Handle Errors Gracefully: Provide helpful error messages to users
Task Master Integration
This project uses Task Master for task management. Key commands:
# View current progress
task-master list
# Get detailed task info
task-master show 1
# Expand task into subtasks
task-master expand --id=1 --research
# Update task with progress
task-master update-task --id=1 --prompt="Completed API structure"
# Complete task
task-master set-status --id=1 --status=done
BMad Method Documentation Structure
Core Documentation
- Project README - General project information and setup
- Architecture - Complete technical architecture specification
- Front-End Spec - UI/UX requirements and component specifications
- Original PRD - Complete product requirements document
Epic and Story Management
- Epic Index - Epic overview and progress tracking
- Epic 1 - Foundation epic details
- Epic 2 - AI engine epic details
- Epic 3 - Advanced features epic
- Stories - Individual story implementations
Current Story Files
Epic 1 - Foundation (Sprint 1):
- Story 1.1 - ✅ Project setup (COMPLETED)
- Story 1.2 - ✅ URL validation (COMPLETED)
- Story 1.3 - ✅ Transcript extraction (COMPLETED)
- Story 1.4 - ✅ Web interface (COMPLETED)
- Story 1.5 - 📋 Video download service (READY)
Epic 2 - AI Engine (Sprints 2-3):
- Story 2.1 - 📋 OpenAI integration (READY)
- Story 2.2 - 📋 Pipeline orchestration (READY)
- Story 2.3 - 📋 Caching system (READY)
- Story 2.4 - 📋 Multi-model AI (READY)
- Story 2.5 - 📋 Export features (READY)
Development Workflow
- Check Epic Progress: Review Epic Index for current status
- Review Next Story: Read story file for implementation details
- Follow Dev Notes: Use architecture references and technical specifications
- Implement & Test: Follow story tasks/subtasks systematically
- Update Progress: Mark story complete and update epic status
Story-Based Implementation Priority
Current Focus: Epic 1 - Foundation & Core YouTube Integration
Sprint 1 (Weeks 1-2) - Epic 1 Implementation:
- ✅ Story 1.2 - YouTube URL Validation and Parsing (COMPLETED)
- ✅ Story 1.3 - Transcript Extraction Service (COMPLETED with mocks)
- ✅ Story 1.4 - Basic Web Interface (COMPLETED)
- Story 1.5 - Video Download and Storage Service (12-16 hours) ⬅️ START HERE
Sprint 2 (Weeks 3-4) - Epic 2 Core: 4. Story 2.1 - Single AI Model Integration (12-16 hours) 5. Story 2.2 - Summary Generation Pipeline (16-20 hours) 6. Story 2.3 - Caching System Implementation (12-16 hours)
Sprint 3 (Weeks 5-6) - Epic 2 Advanced: 7. Story 2.4 - Multi-Model Support (16-20 hours) 8. Story 2.5 - Export Functionality (12-16 hours)
Developer Resources:
- Developer Handoff Guide - Start here for implementation
- Sprint Planning - Detailed sprint breakdown
- Story Files - All stories with complete Dev Notes
Admin Page Implementation (Latest Feature) 🚀
No-Authentication Admin Interface
A standalone admin page provides immediate access to YouTube Summarizer functionality without authentication barriers.
Key Implementation Details:
- File:
frontend/src/pages/AdminPage.tsx - Route:
/admin(bypasses ProtectedRoute wrapper in App.tsx) - URL:
http://localhost:3002/admin - Backend: CORS configured to accept requests from port 3002
Visual Design:
- Orange "Admin Mode" theme with Shield icon
- Status badges: "Direct Access • Full Functionality • Testing Mode"
- Footer: "Admin Mode - For testing and development purposes"
Usage:
- Start services:
python backend/main.py+npm run dev - Visit:
http://localhost:3002/admin - Test with:
https://www.youtube.com/watch?v=DCquejfz04A
Technical Notes:
- Uses same components as protected dashboard (SummarizeForm, ProgressTracker, TranscriptViewer)
- No AuthContext dependencies - completely self-contained
- Perfect for testing, demos, and development workflow
This guide is specifically tailored for Claude Code development on the YouTube Summarizer project.